Bài 1 trên nửa đương tròn tâm O , đường kính AB = 8cm , dựng dây AB = 4cm và tiếp tuyến Ax . Tia BC cắt Ax tại D . Gọi K là trung điểm của AD.
a) tính BC,CD
b) chứng minh KC là tiếp tuyến của đường tròn tâm O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
hay \(\widehat{ADC}=180^0-90^0=90^0\)
b: Ta có: ΔADC vuông tại D
mà DI là đường trung tuyến ứng với cạnh huyền AC
nên DI=IC=IA=AC/2
Xét ΔODI và ΔOAI có
OD=OA
DI=AI
OI chung
Do đó: ΔODI=ΔOAI
Suy ra: \(\widehat{ODI}=\widehat{OAI}=90^0\)
hay ID là tiếp tuyến của (O)
\(\widehat{IAF}=\widehat{CAF}\)
\(\widehat{CFA}+\widehat{CAF}=90^0\)
\(\widehat{BAF}+\widehat{IAF}=90^0\)
\(\Rightarrow\widehat{CFA}=\widehat{BAF}\)
c.
O là trung điểm AB, G là trung điểm AI \(\Leftrightarrow\) OG là đường trung bình ABI
\(\Rightarrow OG//BI\Rightarrow OG\perp AC\)
Mà \(OA=OC\Rightarrow OG\) là trung trực AC
\(\Rightarrow AG=CG\Rightarrow CG\) là tiếp tuyến
(Quá lực!!!)
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
a/ Xét tam giác MAO và tam giác MCO có
MA = MC
MO chung
AO = AC
=> tam giác MAO = tam giác MCO
\(\Rightarrow\widehat{AOM}=\widehat{COM}\)
\(\Rightarrow OM\) là phân giác \(\widehat{AOC}\) mà tam giác AOC cân tạo O
\(\Rightarrow OM\) là đường cao của tam giác AOC
\(\Rightarrow\)OM vuông góc với AC
b/ Từ câu a ta suy ra được OM vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\)OM vuông góc AC
Mà NC vuông góc AC
=> OM // NC (1)
ta lại có AI = IC (2)
Từ (1) và (2) => OM là đường trung bình của tam giác ONC
=> M là trung điểm của AN
c/ Ta thấy rằng CH // AN (vì cùng vuông góc AB)
\(\Rightarrow\frac{CK}{MN}=\frac{BK}{BM}=\frac{KH}{AM}\)
Mà MN = AM nên => CK = KH
Vậy K là trung điểm của CH