K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

giup ai giup toi cho 1 k

8 tháng 3 2016

khó quá bn ạ

4 tháng 6 2017
  1. có : \(\hept{\begin{cases}\left(a+b\right)^2=1\\\left(a-b\right)^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+2ab+b^2=1\\a^2-2ab+b^2\ge0\end{cases}\Leftrightarrow a^2+b^2\ge\frac{1}{2}}\)   nên : \(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2}+\frac{4}{a+b}=\frac{1}{2}+4=\frac{9}{2}\)\(P_{min}=\frac{9}{2}\Leftrightarrow a=b=\frac{1}{2}\)
4 tháng 6 2017

Bài 1: Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Lại có BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\left(a-b\right)^2\ge0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\left(a+b=1\right)\)

Cộng theo vế 2 BĐT trên có:

\(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge4+\frac{1}{2}=\frac{9}{2}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

Bài 2: Áp dụng BĐT AM-GM ta có:

\(VT^2=\left(x-1\right)+\left(3-x\right)+2\sqrt{\left(x-1\right)\left(3-x\right)}\)

\(=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\)

\(\le2+\left(x-1\right)+\left(3-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\left(1\right)\). Lại có:

\(VP=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\left(2\right)\)

Từ (1);(2) xảy ra khi 

\(VT=VP=2\Rightarrow\left(x-2\right)^2+2=2\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\) (thỏa)

Vậy x=2 là nghiệm của pt

NV
25 tháng 3 2022

\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0;\forall m\)

Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_1x_2=2m-8\end{matrix}\right.\)

a. Kết hợp hệ thức Viet và đề bài: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_2-x_1=17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=-2m-9\\x_2=-2m+8\end{matrix}\right.\)

Thế vào \(x_1x_2=2m-8\)

\(\Rightarrow\left(-2m-9\right)\left(-2m+8\right)=2m-8\)

\(\Leftrightarrow m^2-9m+20=0\Rightarrow\left[{}\begin{matrix}m=4\\m=5\end{matrix}\right.\)

NV
25 tháng 3 2022

b.

\(A=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(A=\left(4m+1\right)^2-8\left(m-4\right)\)

\(A=16m^2+33\ge33\)

\(A_{min}=33\) khi \(m=0\)

c.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_1x_2=2m-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-4m-1\\2x_1x_2=4m-16\end{matrix}\right.\)

Cộng vế với vế:

\(x_1+x_2+2x_1x_2=-17\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

a: Khi m=1 thì pt sẽ là: x+x-3=6x-6

=>6x-6=2x-3

=>4x=3

=>x=3/4

b: m^2x+m(x-3)=6(x-1)

=>x(m^2+m-6)=-6+3m=3m-6

=>x(m+3)(m-2)=3(m-2)

Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0

=>m<>-3 và m<>2

=>x=3/(m+3)

\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)

\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)

\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)

Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27

=>4m^2+36m+81=0

=>m=-9/2

28 tháng 3 2022

a) khi m = 1 ta có pt
x + 1.(x-3) = 6.(x-1) 
=> x + x - 3 = 6x - 6
=> -4x = -3
=> x = 3/4
vậy với m=1 pt có no x =3/4

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

4 tháng 6 2021

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

4 tháng 6 2021

cảm ơn rất nhiều