Cho tứ giác ABCD, gọi O là giao điểm hai đường chéo và I là giao điểm hai cạnh bên AD và BC. Chứng minh rằng:
a) Tứ giác ABCD nội tiếp khi và chỉ khi OA.OC = OB.OD
b) Tứ giác ABCD nội tiếp khi và chỉ khi IA. ID = IB. IC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
ΔADB nội tiếp đường tròn(A,D,B∈(O))
AB là đường kính
Do đó: ΔADB vuông tại D(Định lí)
⇒\(\widehat{ADB}=90^0\)
hay \(\widehat{ADE}=90^0\)
Xét tứ giác ADEH có
\(\widehat{ADE}\) và \(\widehat{AHE}\) là hai góc đối
\(\widehat{ADE}+\widehat{AHE}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ADEH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
3: Xét ΔIOD và ΔIBC có
góc ICB=góc IDO
góc OID=góc BIC
=>ΔIOD đồng dạng với ΔIBC
=>IO/IB=ID/IC
=>IO*IC=IB*ID
a) Chúng ta sẽ dùng cách chứng minh phản chứng
Để ABCD là tứ giác nội tiếp thì OA=OB=OC=OD(O là tâm của đường tròn ngoại tiếp tứ giác nội tiếp ABCD vì O là giao điểm của hai đường chéo)
hay \(OA\cdot OC=OB\cdot OD\)(đpcm)
Nếu $OA\neq OB \neq OC \neq OD$ thì sao ạ? Với hình như "O là giao điểm của hai đường chéo thì là tâm đường tròn" chỉ đúng khi ABCD là hình thang cân.