K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E

Hình đây mọi người

7 tháng 3 2016

cho mình xin cách giải cụ thể nha 

11 tháng 12 2020

Đang dùng điện thoại mà lười viết, bạn tham khảo tạm nha. 

b/ Xét ∆ABC có

^A+^ABC+^ACB=180° (đ.l tổng 3 góc)

=> ^ABC + ^ACB = 120°

=> ^ABC/2 + ^ACB/2 = 60°

=> ^CBD + ^BCE = 60°

=> ^CBI + ^BCI = 60°

=> ^BIC = 180° - 60° = 120°

a, Kẻ IF là pg ^BIC. (F thuộc BC)

=> ^BIF = ^CIF = 60°

Mà ^EIB + ^BIC = 180°

=> ^EIB =60°

=> ^EIB = ^DIC = 60° (đối đỉnh)

=> ^EIB = ^BIF = ^FIC = ^DIC = 60°

Khi đó

∆EIB = ∆FIB (g.c.g) (bạn tự xét => BE = FB

∆FIC = ∆DIC (c.g.c) (tự xét) => FC = DC

Do đó

BE +  CD = BF + CF = BC

 

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

a: Xét ΔADB và ΔAEC có

góc A chung

AB=AC
góc ABD=góc ACE

=>ΔADB=ΔAEC

=>AD=AE

b: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

ED//BC

=>góc EDB=góc DBC

=>góc EDB=góc EBD

=>ED=EB

Xét tứ giác BEDC có

DE//BC

BD=CE

=>BEDC là hình thang cân

=>EB=DC=ED

c: Xét ΔOBC có góc OBC=góc OCB

nên ΔOBC cân tại O

=>OB=OC

OB+OD=BD

OC+OE=CE
mà OB=OC và BD=CE

nên OD=OE

=>ΔODE cân tạiO

29 tháng 3 2016

gócDCB=gócEBC=góc1/2ACB=góc1/2ABC

a)xét tg DCB và tg EBC có

BC là cạnh  chung

góc B=góc C

góc DCB=góc EBC

suy ra  tg DCB = tg EBC(g.c.g)

suy ra CD=BE(hai cạnh tương ứng)

xét tgADC và tgAEB có 

góc A là góc chung là góc vuông

AB=AC

DC=EB

suy ra tgADC = tgAEB (ch.cgv)

suy ra AD=AE(hai cạnh tương ứng)

câu b và câu c k xong đi rồi nói

a) Ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACD}=\widehat{BCD}=\dfrac{\widehat{ACB}}{2}\)(CD là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔBAC cân tại A)

nên \(\widehat{ABE}=\widehat{CBE}=\widehat{ACD}=\widehat{BCD}\)

Xét ΔADC vuông tại A và ΔAEB vuông tại A có 

AC=AB(ΔABC vuông cân tại A)

\(\widehat{ACD}=\widehat{ABE}\)(cmt)

Do đó: ΔADC=ΔAEB(Cạnh góc vuông-góc nhọn kề)

Suy ra: AD=AE(Hai cạnh tương ứng) và CD=BE(Hai cạnh tương ứng)

13 tháng 2 2018

Xét tam giác AEC= tam giác ADB(g-c-g)

suy ra AE=AD từ đó BE=DC

13 tháng 2 2018

có CE Cắt BD tại I suy ra AI là p/g suy ra AM vuông góc

1 tháng 2 2018

A A C C B B E E D D I I M M G G J J H H K K

a) Do tam giác ABC vuông cân nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)

Xét tam giác vuông ABE và tam giác vuông ACD có:

AB = AC (gt)

\(\widehat{ABE}=\widehat{ACD}\)

\(\Rightarrow\Delta ABE=\Delta ACD\)  (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BE=CD;AE=AD\)

b) I là giao điểm của hai tia phân giác góc B và góc C của tam giác ABC nên AI cũng là phân giác góc A.

Do tam giác ABC cân tại A nên AI là phân giác đồng thời là đường cao và trung tuyến.

Vậy thì \(\widehat{AMC}=90^o;BM=MC=AM\)

Từ đó suy ra tam giác AMC vuông cân tại M.

c) Gọi giao điểm của DH, AK với BE lần lượt là J và G. 

Do DH và AK cùng vuông góc với BE nên ta có 

\(\Delta BDJ=\Delta BHJ;\Delta BAG=\Delta BKG\Rightarrow BD=BH;BA=BK\)

\(\Rightarrow HK=AD\)

Mà AD = AE nên HK = AE.    (1)

Do tam giác BAK cân tại B, có \(\widehat{B}=45^o\Rightarrow\widehat{BAK}=\frac{180^o-45^o}{2}=67,5^o\)

\(\Rightarrow\widehat{GAE}=90^o-67,5^o=22,5^o=\frac{\widehat{IAE}}{2}\)

Suy ra AG là phân giác góc IAE.

Từ đó ta có \(\widehat{KAC}=\widehat{ICA}\left(=22,5^o\right)\)

\(\Rightarrow\Delta AKC=\Delta CIA\left(g-c-g\right)\Rightarrow KC=IA\)    

Lại có tam giác AIE có AG là phân giác đồng thời đường cao nên nó là tam giác cân, hay AI = AE. Suy ra KC = AE  (2)

Từ (1) và (2) suy ra HK = KC.

a) Ta có: \(\widehat{ABE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACD}=\dfrac{\widehat{ACB}}{2}\)(CD là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC vuông cân tại A)

nên \(\widehat{ABE}=\widehat{ACD}\)

Xét ΔABE vuông tại A và ΔACD vuông tại A có 

AB=AC(ΔABC vuông cân tại A)

\(\widehat{ABE}=\widehat{ACD}\)(cmt)

Do đó: ΔABE=ΔACD(cạnh góc vuông-góc nhọn kề)

Suy ra: BE=CD(Hai cạnh tương ứng) và AE=AD(Hai cạnh tương ứng)