tìm số nguyên n để 2n+7 chia hết cho 3n-1 giúp mình với !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 2n + 5 ) : n + 1
<=> 2n + 2 + 3 : n+ 1
2.( n+ 1) + 3 : n+ 1
mà 2 ( n+ 1 ) : n + 1
=> 3 : n+ 1
n + 1 thuộc ước (3 ) ={ +-1 ; + -3 }
n+1 | -1 | 1 | -3 | 3 |
n | -2 | 0 | -4 | 2 |
vậy n { -4; -2 ; -0 ; 2 }
b, ( 3n+ 1 : n-1
<=> 3n -3 + 4 : n-1
3 .( n-1 ) +4 : n-1
mà 3 ( n-1 ) : n-1
=> 4 : n-1
( tương tự như trên nha )
c, n+ 5 : 2n + 1
<=> 2n + 10 : 2n + 1
( 2n + 1 ) + 9 : 2n + 1
mà 2n + 1 : 2n + 1
=> 9 : 2n + 1
( tương tự như trên)
Bài 1
Ta có :
(2n + 5) \(⋮\)(n + 1 ) => (2n + 2) + 3 \(⋮\)(n + 1)
=> 3 \(⋮\)(n + 1) => n + 1 \(\in\)Ư(3) => n + 1\(\in\){1 ; -1 ; 3 ; -3}
- Với n + 1 = 1 => n = 0
- Với n + 1 = -1 => n = -2
- Với n + 1 = 3 => n = 2
- Với n + 1 = -3 => n = -4
Bài 2
Ta có :
(3n + 1) \(⋮\)(n - 1) => (3n - 3) + 4 \(⋮\)(n - 1)
=> 4 \(⋮\)(n - 1) => n - 1 \(\in\)Ư(4) => n - 1 \(\in\) {1 ; -1 ; 2 ; -2 ; 4 ; -4}
- Với n - 1 = 1 => n = 2
- Với n - 1 = -1 => n = 0
- Với n - 1 = 2 => n = 3
- Với n - 1 = -2 => n = -1
- Với n - 1 = 4 => n = 5
- Với n - 1 = -4 => n = -3
Bài 3 thì mình bó tay
a)(6n-4) chia hết cho (1-2n)
Ta có (1-2n)=3(1-2n)=3-6n
\(\Rightarrow\)(6n-4+3-6n)\(⋮\)(1-2n)
\(\Rightarrow\)(-1)\(⋮\)(1-2n)\(\Rightarrow\)(1-2n)\(\in\) Ư(1)={±1}
Ta có bảng
1-2n | -1 | 1 |
2n | 2 | 0 |
n | 1 | 0 |
Vậy...
T.i.c.k cho mình nhé
- #TM
\(\Rightarrow6n-14⋮3n-1\\ \Rightarrow2\left(3n-1\right)-12⋮3n-1\\ \Rightarrow3n-1\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\\ \Rightarrow3n\in\left\{-3;0;3\right\}\left(n\in Z\right)\\ \Rightarrow n\in\left\{-1;0;1\right\}\)
\(\Leftrightarrow3n-1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{0;1;-1;3;-5\right\}\)
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
(3n - 1) ⋮ (2n - 1)
⇒ 2(3n - 1) ⋮ (2n - 1)
⇒ (6n - 2) ⋮ (2n - 1)
⇒ (6n - 3 + 1) ⋮ (2n - 1)
⇒ [3(2n - 1) + 1] ⋮ (2n - 1)
⇒ 1 ⋮ (2n - 1)
⇒ 2n - 1 ∈ Ư(1) = {-1; 1}
⇒ 2n ∈ {0; 2}
⇒ n ∈ {0; 1}
3n - 1 ⋮ 2n - 1
2(3n-1) ⋮ 2n-1
3(2n-1)+1⋮ (2n-1)
1 ⋮ (2n-1)
(2n- 1 ) \(\in\) \(\)Ư(1) = \(\left\{-1;1\right\}\)
2n-1 | -1 | 1 |
n | 0 | 1 |
Theo bảng trên ta có
n ϵ { 0:1}
\(3n+17⋮2n+3\)
\(\Leftrightarrow2.\left(3n+17\right)⋮2n+3\)
\(\Leftrightarrow6n+34⋮2n+3\)
\(\Leftrightarrow3.\left(2n+3\right)+25⋮2n+3\)
Mà \(3.\left(2n+3\right)⋮2n+3\)
\(\Rightarrow25⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
Làm nốt
a) n + 4 chia hết cho n
vì n chia hết cho n =>để n + 4 chia hết cho n thì 4 phải chia hết cho n
=>n Є {1;2;4}
b/ 3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
tK:
⇔3n−1∈{1;−1;2;−2;4;−4;8;−8;16;−16}⇔3n−1∈{1;−1;2;−2;4;−4;8;−8;16;−16}
hay n∈{0;1;−1;3;−5}
\(\Leftrightarrow n\in\left\{0;1;-1;3;-5\right\}\)