Tìm số nguyên n để biểu thức sau nhận giá trị nguyên :
A= n+1/n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nguyên thì \(n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
để A là số nguyên thì
n+6 chia hết cho n-1
=>(n-1)+7chia hết n-1
=>7chia hết n-1
n-1 thuộc Ư(7)
cậu lập bảng sau đó kết luận hộ tớ nhé
tớ ko lập bảng được
\(\dfrac{6n+1}{2n+1}\left(n\in Z\right)\\ =\dfrac{3\left(2n+1\right)-2}{2n+1}=3-\dfrac{2}{2n+1}\)
Để biểu thức nhận gt nguyên thì : \(\dfrac{2}{2n+1}\in Z\)
\(=>2n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\\ =>2n\in\left\{0;-2;1;-3\right\}\\ =>n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2}\right\}\)
Do n nguyên -> Kết luận : n = 0 hoặc n = -1
Ta có:
\(A=\dfrac{n-3}{n-2}=\dfrac{n-2-1}{n-2}=1-\dfrac{1}{n-2}\)
Để A nhận giá trị nguyên thì \(1⋮\left(n-2\right)\) hay \(\left(n-2\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\left(+\right)\) \(n-2=1\)
\(\Rightarrow n=3\)
\(\left(+\right)\) \(n-2=-1\)
\(\Rightarrow n=1\)
Vậy \(n\in\left\{3;1\right\}\)
\(\dfrac{3n+1}{3n-4}\left(n\in Z\right)\\ =\dfrac{3n-4+5}{3n-4}=1+\dfrac{5}{3n-4}\)
Để biểu thức đạt gt nguyên thì : \(\dfrac{5}{3n-4}\in Z\)
\(=>3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\\ =>3n\in\left\{5;3;9;-1\right\}\\ =>n\in\left\{\dfrac{5}{3};1;3;-\dfrac{1}{3}\right\}\)
Do n nguyên -> Kết luận : \(n\in\left\{1;3\right\}\)
\(\dfrac{3n+1}{3n-4}\) \(=\dfrac{3n-4+5}{3n-4}\) \(=1+\dfrac{5}{3n-4}\)
Để biểu thức nhận giá trị nguyên thì \(5⋮\left(3n-4\right)\)
\(\Rightarrow\left(3n-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(3n-4\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-\dfrac{1}{3}\) | \(1\) | \(\dfrac{5}{3}\) | \(3\) |
Vậy \(x=1\) hoặc \(x=3\) thì biểu thức \(\dfrac{3n+1}{3n-4}\) nhận giá trị nguyên
Để A là số nguyên thì \(n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
n-3/n+2= n+2-5/n+2=1-5/n+2
Để biểu thức nhận giá trị nguyên thì n+2 phải thuộc ước của 5
TH1: n+2=5 --> n=3
TH2: n+2=-5 --> n=-7
TH3: n+2=1--> n=-1
TH4: n+2=-1 --> n=-3
Để A nhận giá trị nguyên thì 3n+10 phải chia hết cho n+2
Ta có: 3n+10=3.(n+2)+4
\(\Rightarrow\)4 chia hết cho 3n+10
Tức là \(3n+10\in U\left(4\right)\)
Mả \(U\left(4\right)\in\left(1;2;4\right)\)
ta có bảng giá trị sau:
3n+10 | 1 | 2 | 4 |
3n | -9 | -8 | -6 |
n | -3 | -8/3 | -2 |
Lại do: n thuộc Z.
Vay n= -3 ; -2.
\(n\in\left\{1;-1\right\}\)
\(n∊\left\{1;-1\right\}\)