Cho tam giác DEC có AB = AC, DI là tia phân giác của góc EDC
a. Chứng minh I là trung điểm của EC
b. Qua I kẻ đường thẳng song song với ED cắt DC tại M. Chứng minh góc MIC = góc MCI
Giúp em với ạ, em cảm ơn anh chị nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
nên AB=CD và góc ABM=góc CDM
=>AB//CD
=>CE vuông góc với AC
=>AC vuông góc DE
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD
=>góc ABM=góc CDM
b: Vì ABCD là hình bình hành
nên AB=CD
AB//CD
AB vuông góc với AC
Do đó: CD vuông góc với AC
=>AC vuông góc với DE
c: Xét tứ giác ABEC có
CE//AB
BE//AC
Do đó: ABEC là hình bình hành
=>CE=AB=CD
=>C là trung điểm của ED
a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)
Giải :a) Ta có BD // Ay (gt)
=> góc DBM = góc A (so le trong)
mà góc A = 900 => góc BDM = 900
Xét tam giác AMC và tam giác BMD
có góc A = góc DBM = 900 (cmt)
MA = MB(gt)
góc AMC = góc BMD ( đối đỉnh)
=> tam giác AMC = tam giác BMD (g.c.g)
b) Ta có : tam giác AMC = tam giác BMD (cm câu a)
=> MC = MD ( hai cạnh tương ứng)
Xét tam giác MEC và tam giác MED
có MC = MD (cmt)
CME = DME (gt)
ME : chung
=> tam giác MEC = tam giác MED (c.g.c)
=> góc CEM = góc DEM (hai góc tương ứng)
Mà tia EM nằm giữa ED và EC
=> EM là tia p/giác của góc DEC (Đpcm)
c) Ta có : tam giác AMC = tam giác BMD (cm câu a)
=> BD = AC ( hai cạnh tương ứng)
Mà DE = BD + BE
hay AC + BE = DE
=> BE = DE - AC (1)
Ta lại có tam giác MEC = tam giác MED (cm câu b)
=> EC = ED (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra BE = CE - AC (Đpcm)