K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

a: Xét ΔMNQ có 

A là trung điểm của MN

B là trung điểm của MQ

Do đó: AB là đường trung bình của ΔMNQ

Suy ra: AB//NQ và AB=NQ/2(1)

Xét ΔNPQ có

C là trung điểm của QP

D là trung điểm của NP

Do đó: CD là đường trung bình của ΔNPQ

Suy ra: CD//NQ và CD=NQ/2(2)

Từ (1) và (2) suy ra ABCD là hình bình hành

25 tháng 11 2018

a) Xét tam giác QMN có :

A là trung điểm của MN

B là trung điểm của MQ

=) AB là đường trung bình của tam giác QMN

=) AB // MQ Và AB=\(\frac{1}{2}\)MQ (*)

Xét tam giác QPN có :

C là trung điểm của QP

D là trung điểm của NP

=) CD là đường trung bình của tam giác QPN

=) CD // QN Và CD=\(\frac{1}{2}\)QN (**)

Từ (*) và (**) =) Tứ giác ABCD là hình bình hành  (1)

Xét tam giác MQP có :

B là trung điểm của MQ

C là trung điểm của QP

=) BC là đường trung bình của tam giác MQP

=) BC // MP

Do MNPQ là hình thoi =) MP\(\perp\)NQ

Mà BC // MP và AB // NQ

=) BC\(\perp\)AB   (2)

Từ (1) và (2) =) ABCD là hình chữ nhật

b) Ta có : MQ=QP

Do B là trung điểm của MQ =) MB=BQ=\(\frac{MQ}{2}\)

Do C là trung điểm của QP =) QC=CP=\(\frac{QP}{2}\)

=) QB=QC

Do MNPQ là hình thoi =) QM là đường phân giác \(\widehat{MQP}\)

=) \(\widehat{MQN}\)=\(\widehat{NQP}\)=\(\frac{\widehat{MQP}}{2}\)

Xét tam giác QMN có:

MQ=MQ và \(\widehat{QMN}\)=600

=) QMN là tam giác đều

Xét tam giác MQN có :

NQ là đường trung tuyến=) NQ là đường phân giác của \(\widehat{MNQ}\)

=) \(\widehat{MNB}\)=\(\widehat{BNQ}\)=\(\frac{\widehat{MNQ}}{2}\)=\(\frac{60^0}{2}\)= 300

Xét tam giác QBN và tam giác QCN có :

QB=QC ( chứng minh trên )

\(\widehat{BQN}\)=\(\widehat{CQN}\) ( chứng minh trên )

QN là cạch chung

=) tam giác QBN = tam giác QCN (c-g-c)

=)\(\widehat{BNQ}\)=\(\widehat{QNC}\) =300 (2 góc tương ứng ) và BN=CN ( 2 cạch tương ứng )

=) Tam giác BNC là tam giác cân tại N (3)

Ta có : \(\widehat{BNQ}\)+\(\widehat{QNC}\)=\(\widehat{BNC}\)

       =) 300 +300 =\(\widehat{BNC}\)

      =) \(\widehat{BNC}\)=600  (4)

Từ (3) và (4) =) Tam giác BNC là tam giác đều

16 tháng 12 2021

a: Xét tứ giác MHKQ có 

MH//QK

MH=QK

Do đó: MHKQ là hình bình hành

mà MH=MQ

nên MHKQ là hình thoi

24 tháng 10 2023

M N Q P A I K

MN//PQ (cạnh đối hbh) => MI//KQ

Ta có

\(MI=\dfrac{MN}{2};KQ=\dfrac{PQ}{2}\) Mà MN=PQ (cạnh đối hbh) => MI=KQ

=> MIKQ là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Ta có

MA=MQ (gt) (1)

\(MN=2MQ\left(gt\right)\Rightarrow MQ=\dfrac{MN}{2}\) (2)

Ta có

\(MI=\dfrac{MN}{2}\) (3)

Từ (1) (2) (3) \(\Rightarrow MA=MI=\dfrac{MN}{2}\) => tg AMI cân tại M

Ta có

\(\widehat{AMI}=\widehat{AMP}-\widehat{M}=180^o-120^o=60^o\)

Xét tg AMI có

\(\widehat{MAI}+\widehat{MIA}+\widehat{AMI}=180^o\)

\(\Rightarrow\widehat{MAI}+\widehat{MIA}=180^o-\widehat{AMI}=180^o-60^o=120^o\)

Mà \(\widehat{MAI}=\widehat{MIA}\) (góc ở đáy tg cân)

\(\Rightarrow\widehat{MAI}=\widehat{MIA}=\dfrac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{MAI}=\widehat{MIA}=\widehat{AMI}=60^o\Rightarrow\Delta AMI\) là tg đều

c/

Xét hbh MNPQ có

MQ//NP => MA//NP

MA=MQ (gt); MQ=NP (cạnh đối hbh)

=> MA=NP

=> APMN là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

Ta có

\(MI=AI=\dfrac{MN}{2}\)  (cạnh tg đều)

\(NI=\dfrac{MN}{2}\)

\(\Rightarrow AI=NI=\dfrac{MN}{2}\) => tg AIN cân tại I

Ta có \(\widehat{AIN}=\widehat{MIN}-\widehat{AIM}=180^o-60^o=120^o\)

Xét tg cân AIN có

\(\widehat{AIN}+\widehat{IAN}+\widehat{INA}=180^o\)

\(\Rightarrow\widehat{IAN}+\widehat{INA}=180^o-\widehat{AIN}=180^o-120^o=60^o\)

Mà \(\widehat{IAN}=\widehat{INA}\) (góc ở đáy tg cân)

\(\Rightarrow\widehat{IAN}=\widehat{INA}=\dfrac{60^o}{2}=30^o\)

Xét tg AMN có

\(\widehat{MAN}+\widehat{AMI}+\widehat{INA}=180^o\)

\(\Rightarrow\widehat{MAN}=180^o-\widehat{AMI}-\widehat{INA}=180^o-60^o-30^o=90^o\)

=> APMN là hình chữ nhật (hình bình hành có 1 góc vuông là HCN