Tìm n thuộc Z để
a)\(\frac{3n+7}{n-2}\in Z\) b) \(\frac{n+8}{n-2}\in N\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)
<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)
c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
a ) Để \(\frac{n+3}{n-2}\) là số nguyên âm <=> n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết cho n - 2
<=> 5 chia hết cho n - 2
<=> n - 2 thuộc Ư ( 5 )
Ư ( 5 ) = { + 1 ; + 5 }
n - 2 | 1 | - 1 | 5 | - 5 |
n | 3 | 1 | 7 | - 3 |
\(\frac{n+3}{n-2}\) | 6/1 | 4/-1 | 10/5 | 0 |
Vậy để n + 3 / n - 2 là số âm thì n = 1
Câu b và c làm tương tự
Tìm n ∈ N để
a) \(\dfrac{2n^4-3n^2+n-2}{n-1}\) ∈ N (n≠1)
b) \(\dfrac{-3n^3+2n^2-n-2}{n+2}\) ∈ Z (n≠-2)
a: \(\Leftrightarrow2n^4-2n^3-n^3+n^2-n^2+n-2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{-1;1;2\right\}\)
hay \(n\in\left\{0;2;3\right\}\)
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
Vì A, B, C thuộc Z nên tử chia hết cho mẫu, đặt phép chia ra
Để n+3/n-2 là số nguyên âm thì n+3 phải chia hết cho n-2.
Ta có: n+3 :n-2
n-2+5 : n-2
Vì n-2 chia hết cho n-2 nên 5 phải chia hết cho n-2.Suy ra n-2 thuộc Ư(5)
Suy ra n-2 thuộc : 1;-1;5;-5
n thuộc 3;1;7;-3
Các câu còn lại CM tương tự
a)\(\frac{3n+7}{n-2}=\frac{3n-6+13}{n-2}=3+\frac{13}{n-2}\)
để 3n+7/n-2 thuộc Z thì \(n-2\in\left\{-13;-1;1;13\right\}\Rightarrow n\in\left\{-12;1;3;15\right\}\)
b)\(\frac{n+8}{n-2}=\frac{n-2+10}{n-2}=1+\frac{10}{n-2}\)
để n+8/n-2 thuộc N thì \(n-2\in\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(ncóthể\in\left\{-8;-3;0;1;3;4;7;12\right\}\)mà n thuộc N
\(n\left\{0;1;3;4;7;12\right\}\)