K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Đề không rõ ràng. Bạn xem lại nhé. 

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

1.

PT $\Leftrightarrow 2^{x^2-5x+6}+2^{1-x^2}-2^{7-5x}-1=0$

$\Leftrightarrow (2^{x^2-5x+6}-2^{7-5x})-(1-2^{1-x^2})=0$

$\Leftrightarrow 2^{7-5x}(2^{x^2-1}-1)-(2^{x^2-1}-1)2^{1-x^2}=0$

$\Leftrightarrow (2^{x^2-1}-1)(2^{7-5x}-2^{1-x^2})=0$

$\Rightarrow 2^{x^2-1}-1=0$ hoặc $2^{7-5x}-2^{1-x^2}=0$

Nếu $2^{x^2-1}=1\Leftrightarrow x^2-1=0$

$\Leftrightarrow x^2=1\Leftrightarrow x=\pm 1$

$2^{7-5x}-2^{1-x^2}=0$

$\Leftrightarrow 7-5x=1-x^2\Leftrightarrow x^2-5x+6=0$

$\Leftrightarrow (x-2)(x-3)=0\Leftrightarrow x=2; x=3$

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

2. Đặt $\sin ^2x=a$ thì $\cos ^2x=1-a$. PT trở thành:

$16^a+16^{1-a}=10$

$\Leftrightarrow 16^a+\frac{16}{16^a}=10$

$\Leftrightarrow (16^a)^2-10.16^a+16=0$

Đặt $16^a=x$ thì:

$x^2-10x+16=0$

$\Leftrightarrow (x-2)(x-8)=0$

$\Leftrightarrow x=2$ hoặc $x=8$

$\Leftrightarrow 16^a=2$ hoặc $16^a=8$

$\Leftrightarrow 2^{4a}=2$ hoặc $2^{4a}=2^3$

$\Leftrightarroww 4a=1$ hoặc $4a=3$

$\Leftrightarrow a=\frac{1}{4}$ hoặc $a=\frac{3}{4}$

Nếu $a=\frac{1}{4}\Leftrightarrow \sin ^2x=\frac{1}{4}$

$\Leftrightarrow \sin x=\pm \frac{1}{2}$

Nếu $a=\sin ^2x=\frac{3}{4}\Rightarrow \sin x=\pm \frac{\sqrt{3}}{2}$

Đến đây thì đơn giản rồi.

15 tháng 2 2020

20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)

Vậy...

15 tháng 2 2020
https://i.imgur.com/PCDykdb.jpg
15 tháng 12 2018

a) 5x +3=2x-8 <=>5x-2x=-8-3 <=>3x=-11 <=> x=\(\dfrac{-11}{3}\)

b)6x-3(x+2)=5x+3<=> (6-3-5)x-9=0 <=> x=\(\dfrac{-9}{2}\)

c) (3x-9)(5x+10)=0<=> \(\left[{}\begin{matrix}3x-9=0\\5x+10=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d)8x(x+2)+16(x+2)=0<=>(x+2)(8x+16)=0<=>\(\left[{}\begin{matrix}x=-2\\x=-2\end{matrix}\right.\)

e)x2 -12x+35=0 <=>\(\left[{}\begin{matrix}x=7\\x=5\end{matrix}\right.\)

15 tháng 2 2020

Mấy cái này chuyển vế đổi dấu là xong í mà :3

1,

16-8x=0

=>16=8x

=>x=16/8=2

2, 

7x+14=0

=>7x=-14

=>x=-2

3,

5-2x=0

=>5=2x

=>x=5/2

Mk làm 3 cau làm mẫu thôi

Lúc đăng đừng đăng như v :>

chi ra khỏi ngt nản

từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại

9 tháng 7 2018

A. \(4\left(x+2\right)-7\left(2x-1\right)+9\left(3x-4\right)=30\)
\(\Leftrightarrow4x+8-14x+7+27x-36=30\)
\(\Leftrightarrow4x-14x+27x=30-8-7+36\)
\(\Leftrightarrow17x=51\)
\(\Leftrightarrow x=3\) . Vậy \(S=\left\{3\right\}\)

B. \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow10x-12x-12x=16-15-16+11\)
\(\Leftrightarrow10x=-4\)
\(\Leftrightarrow x=-\dfrac{2}{5}\) . Vậy \(S=\left\{-\dfrac{2}{5}\right\}\)

Câu C) bạn xem lại đề nha mik tính ko đc

D. \(\left(5x-3\right)4x-2x\left(10x-3\right)=15\)
\(\Leftrightarrow20x^2-12x-20x^2+6x=15\)
\(\Leftrightarrow-6x=15\)
\(\Leftrightarrow x=-\dfrac{5}{2}\) .
Vậy \(S=\left\{-\dfrac{5}{2}\right\}\)


22 tháng 4 2020

cacs bạn giúp mik vs mik đang cần gấp

22 tháng 4 2020

\(2x^2-3x=2.(-1)^2-3.(-1)=2-(-3)=5\)
\(5x^2-3x-16=5.2^2-3.2-16=20-6-16=-2\)
\(5x-7y+10=5.\frac{1}{5}\)\(-7.\frac{1}{7}\)\(+10=1-1+10=10\)
\(2x-3y^2+4z^3=2.2+3.(-1)^2+4(-1)=4+3-4=3\)
Học tốt!

a) Ta có: \(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)

b) Ta có: \(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: S={2;3}

c) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: S={1;2}

d) Ta có: \(2x^2-6x+1=0\)

\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)

mà \(2\ne0\)

nên \(x^2-3x+\dfrac{1}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)

\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)

e) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)

25 tháng 1 2021

cho vào máy tính là ra hết

`#3107`

`a)`

`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`

`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`

`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`

`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`

`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`

`= (12x + y - 2)(2 - y + 2 + y)`

`= (12x + y - 2)*4`

`= 48x + 4y - 8`

`b)`

\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)

`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`

`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`

`= - 51`

`c)`

\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)

`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`

`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`

`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`

`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`

`= 1`

`d)`

\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)

`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`

`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`

`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`

`= x^6 + 16x^4 - 24x^2 - 128`