A=(x+1)/(x-2)+(x-1)/(x+2)+(x^2+3)/(4-x^2).tim x de A ko am
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.x=1;5
2.x=11
3.x=1;y=4
4.a)a=2;12 b)a=1;2
nho h cho minh nha
Bài 2:
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)
b: Thay x=1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)
Thay x=-1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)
c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)
=>6(x-2)=-1/2
=>x-2=-1/12
hay x=23/12
A(x)=x^2-2ax+a^2
Q(x)=x^2+(3a+1)x+a^2
A(1)=Q(3)
=>1-2a+a^2=3^2+3(3a+1)+a^2
=>1-2a=9+9a+3
=>9a+12=-2a+1
=>11a=-11
=>a=-1
ĐKXĐ: \(x\ne\pm2\)
Ta có : \(A=\frac{x+1}{x-2}+\frac{x-1}{x+2}+\frac{x^2+3}{4-x^2}\)
\(=\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x^2+3}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+3x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2-3x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x^2+3}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+3x+2+x^2-3x+2-x^2-3}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+1}{x^2-4}\)
Vì \(x^2+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow\)Để A không âm thì \(x^2-4>0\)(do \(x\ne\pm2\)nên \(x^2-4\ne0\))
\(\Leftrightarrow x^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}x>2\\x< -2\end{cases}}\)
Vậy để A không âm thì \(x>2\)hoặc \(x< -2\)