Cho ba số a,b,c thỏa mãn: a^2+b^2+c^2<=18.Tìm giá trị nhỏ nhất của bt:A=3ab+bc+ca
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a^2+b^2+c^2) x 2 = 2 x (a^4+b^4+c^4)
suy ra: (a+b+c)^2 x 2 = (a+b+c)^4 x 2
Mà a+b+c= 0(gt)
suy ra: 0^2 x 2=0^4 x 2
0 = 0
=)))
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}=\frac{(\frac{3}{2})^2}{3}=\frac{3}{4}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=\frac{1}{2}$.
lam giong nhu khuyen hoang nhung me bao lo
(a+2)2 = 0,2
(b-3)4= 2
(5-c)6=0
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$
$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}$
Áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$
$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}\geq \frac{(a+b+c).3^5}{27}=9(a+b+c)$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Hiển nhiên \(a;b;c\ne0\)
Đặt \(a^2-ab=b^2-bc-c^2-ca=k\ne0\) (do a;b;c phân biệt và khác 0)
\(\Rightarrow\left\{{}\begin{matrix}a-b=\dfrac{k}{a}\\b-c=\dfrac{k}{b}\\c-a=\dfrac{k}{a}\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=\dfrac{k}{a}+\dfrac{k}{b}+\dfrac{k}{c}\)
\(\Rightarrow0=\dfrac{k}{a}+\dfrac{k}{b}+\dfrac{k}{c}\)
\(\Rightarrow k\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{0}{k}=0\)
Lời giải:
Do $a\geq 4, b\geq 5, c\geq 6$
$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$
$\Rightarrow c\leq 7$
$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$
$\Rightarrow a< 9$
$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$
$\Rightarrow b< 8$
Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$
Suy ra:
$(a-4)(a-9)\leq 0$
$(b-5)(b-8)\leq 0$
$(c-6)(c-7)\leq 0$
$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$
$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$
$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$
Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$
Đặt dãy tỉ số = k => a = 2014k , b = 2015k , c = 2016k Thay a,b,c vào đẳng thức dưới => ĐPCM
- Nếu \(abc\ge0\Rightarrow a^2+b^2+c^2+abc\ge0\) dấu "=" xảy ra khi và chỉ khi \(a=b=c=0\)
- Nếu \(abc< 0\Rightarrow\) trong 3 số a; b; c có ít nhất 1 số âm
Không mất tính tổng quát, giả sử \(c< 0\Rightarrow ab>0\)
Mà \(\left\{{}\begin{matrix}-2\le c< 0\\ab>0\end{matrix}\right.\Leftrightarrow abc\ge-2ab\)
\(\Rightarrow a^2+b^2+c^2+abc\ge a^2+b^2-2ab+c^2=\left(a-b\right)^2+c^2>0\) (không thỏa mãn)
Vậy \(a=b=c=0\)
Tìm điểm rơi: ( a; b ; c ) = ( -3; 3; 0 ) hoặc ( 3; -3 ; 0 )
Xét: 2A + 3.18 ≥≥ \(2\left(3ab+bc+ca\right)+3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2+2\left(a+b\right)^2+2c^2\text{≥}0\) đúng
Nháp :
\(k\left(a+b+c\right)^2+m\left(a+b\right)^2+nc^2\)
\(k+m=3\)
\(n+k=3\)