Chứng minh rằng \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{24}-\frac{1}{36}<\frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(có\) \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}\approx1,4\)
\(mà\) \(\frac{1}{2}=1,5\)
\(=>\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}<\frac{1}{2}\)
\(\frac{1}{4}+\frac{1}{16}+...+\frac{1}{196}\)\(<\frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+...+\frac{1}{14^2-1}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{15}\right)<\frac{1}{2}\) \(\left(đpcm\right)\)
Ta có :
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
\(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}< \frac{1}{3}\)
\(\frac{16}{64}+\frac{4}{64}+\frac{1}{64}< \frac{1}{3}\)
\(\frac{16+4+1}{64}< \frac{1}{3}\)
\(\frac{21}{64}< \frac{1}{3}\)
=> 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Ta có: \(\frac{1}{2}-\frac{1}{4}=\frac{2}{4}-\frac{1}{4}=\frac{2-1}{4}=\frac{1}{4}\)
\(\frac{1}{8}-\frac{1}{16}=\frac{2}{16}-\frac{1}{16}=\frac{2-1}{16}=\frac{1}{16}\)
\(\frac{1}{32}-\frac{1}{64}=\frac{2}{64}-\frac{1}{64}=\frac{2-1}{64}=\frac{1}{64}\)
=> \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
=\(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)
=\(\frac{16}{64}+\frac{4}{64}+\frac{1}{64}=\frac{21}{64}\)
Ta có: \(\frac{21}{64}< \frac{21}{63}=\frac{1}{3}\)
=> \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
Đặt \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(A+2A=1-\frac{1}{64}\)
\(3A=1-\frac{1}{64}< 1\)
=>A<1/3
=>đpcm