Cho tam giác ABC vuông tại A, đường cao AH. Trên BC lấy điểm M sao cho BM = AB. CMR AM là tia phân giác của góc HAC.
Vẽ hình giùm mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
\(\widehat{BAC}=90^0\)
Do đó: ABDC là hình chữ nhật
b: Xét ΔADE có
M,H lần lượt là trung điểm của AD,AE
=>MH là đường trung bình
=>MH//DE
=>DE vuông góc AE
Xét tứ giác ABED có \(\widehat{ABD}=\widehat{AED}=90^0\)
=>ABED là tứ giác nội tiếp
=>\(\widehat{BDE}=\widehat{EAB}\)
=>\(\widehat{BDE}=\widehat{HAB}=\widehat{C}\)
=>\(\widehat{BDE}=\widehat{C}\)
mà \(\widehat{ACB}=\widehat{ADB}\)
nên \(\widehat{BDE}=\widehat{ADB}\)
=>DB là phân giác của \(\widehat{ADE}\)
a) Xét ΔCAM có CA=CM(gt)
nên ΔCAM cân tại C(Định nghĩa tam giác cân)
hay \(\widehat{CAM}=\widehat{CMA}\)(hai góc ở đáy)(3)
b) Vì tia AM nằm giữa hai tia AB,AC
nên ta có: \(\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)
\(\Leftrightarrow\widehat{CAM}+\widehat{NAM}=90^0\)
hay \(\widehat{CAM}\) và \(\widehat{MAN}\) là hai góc phụ nhau(đpcm)
c) Ta có: tia AM nằm giữa hai tia AB,AC
nên \(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}\)
hay \(\widehat{CAM}+\widehat{BAM}=90^0\)(1)
Xét ΔAHM vuông tại H có
\(\widehat{HAM}+\widehat{HMA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{HAM}+\widehat{CMA}=90^0\)(2)
Từ (1), (2) và (3) suy ra \(\widehat{HAM}=\widehat{BAM}\)
mà tia AM nằm giữa hai tia AB,AH
nên AM là tia phân giác của \(\widehat{BAH}\)(đpcm)
d) Xét ΔAHM và ΔANM có
AH=AN(gt)
\(\widehat{HAM}=\widehat{NAM}\)(cmt)
AM chung
Do đó: ΔAHM=ΔANM(c-g-c)
nên \(\widehat{AHM}=\widehat{ANM}\)(hai góc tương ứng)
mà \(\widehat{AHM}=90^0\)(AH\(\perp\)HM)
nên \(\widehat{ANM}=90^0\)
hay MN\(\perp\)AB(đpcm)
a: ΔBAM cân tại B
mà BE là đường cao
nên BE là phân giác của góc ABM
b: Xét ΔMBA có
AH,BE là đừog cao
AH căt BE tại K
=>K là trực tâm
=>MK vuông gócAB
=>MK//AC
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )