Bài 3: Cho tam giác FEH. M là trung điểm FH. Trên tia đối của tia ME lấy điểm D sao cho EM = MD.
a/ Chứng minh rằng : DFEM = DHDM.
b/ Chứng minh : FE // HD
c/ Trên DH kéo dài lấy điểm N sao cho HD =HN
(H ≠ N) chứng minh : EN // FH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △DEM và △KFM có
DM=KM(giả thiết)
góc DME=góc KMF(2 góc đối đỉnh)
EM=MF(Vì M là trung điểm của EF)
=>△DEM =△KFM(c-g-c)
=> góc MDE=góc MKF (2 góc tương ứng)
hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF
=>DE//KF
b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ
Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có
HD=HP
HE là cạnh chung
=> △DHE= △PHE(2 cạnh góc vuông)
=> góc DEM=góc PEM
=> EH là tia phân giác của góc DEP
hay EF là tia phân giác của góc DEP
vậy EF là tia phân giác của góc DEP
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
a/
Xét tg MAB và tg MEC có
MB=MC (gt); MA=ME (gt)
\(\widehat{AMB}=\widehat{EMC}\) (góc đối đỉnh)
=> tg MAB = tg MEC (c.g.c)
b/
Ta có tg MAB = tg MEC (cmt) \(\Rightarrow\widehat{BAM}=\widehat{CEM}\)
Hai góc trên ở vị trí so le trong => AB//CE
c/
Xét tg vuông ABH và tg vuông DBH có
HA=HD (gt); BH chung => tg ABH = tg DBH (hai tg vuông có 2 cạnh góc vuông bằng nhau) => AB=BD(1)
Ta có tg MAB = tg MEC (cmt) => AB=CE (2)
Từ (1) và (2) => BD=CE
a) Do M là trung điểm của BC (gt)
⇒ BM = MC
Xét ∆MAB và ∆MEC có:
BM = MC (cmt)
∠AMB = ∠EMC (đối đỉnh)
AM = ME (gt)
⇒ ∆MAB = ∆MEC (c-g-c)
b) Do ∆MAB = ∆MEC (cmt)
⇒ ∠MAB = ∠MEC (hai góc tương ứng)
Mà ∠MAB và ∠MEC là hai góc so le trong)
AB // CE
c) Xét hai tam giác vuông: ∆AHB và ∆DHB có:
BH là cạnh chung
AH = HD (gt)
⇒ ∆AHB = ∆DHB (hai cạnh góc vuông)
⇒ AB = BD (hai cạnh tương ứng)
Do ∆MAB = ∆MEC (cmt)
⇒ AB = CE (hai cạnh tương ứng)
Mà AB = BD (cmt)
⇒ BD = CE
Vì M là trung điểm của EF => ME = MF
Xét △MDE và △MIF
Có : ME = MF (gt)
DME = FMI (2 góc đối đỉnh)
MD = MI (gt)
=> △MDE = △MIF (c.g.c)
=> DE = IF (2 cạnh tương ứng)
Và DEM = MFI (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> DE // IF (dhnb)
b, Vì △MDE = △MIF (cmt)
=> DE = IF (2 cạnh tương ứng)
Xét △HDE vuông tại H và △HGE vuông tại H
Có: HD = HG (gt)
HE : cạnh chung
=> △HDE = △HGE (cgv)
=> DE = GE (2 cạnh tương ứng)
Mà DE = IF (cmt)
=> EG = IF (đpcm)
a) Xét tam giác HAD và tam giác HCB có:
+ HD = HB (gt).
+ \(\widehat{AHD}=\widehat{CHB}\) (đối đỉnh).
+ HA = HC (H là trung điểm AC).
=> Tam giác HAD = Tam giác HCB (c - g - c).
b) Xét tứ giác ADCB có:
+ H là trung điểm AC (gt).
+ H là trung điểm BD (HD = HB).
=> Tứ giác ADCB là hình bình hành (dhnb).
=> AB // DC (Tính chất hình bình hành).
c) Ta có: AB // DC (cmt). \(\Rightarrow\widehat{HAM}=\widehat{HCN}\) (SLT).
Xét tam giác AHM và tam giác CHN có:
+ \(\widehat{AHM}=\widehat{CHN}\) (đối đỉnh).
+ AH = CH (H là trung điểm AC).
+ \(\widehat{HAM}=\widehat{HCN}\) (cmt).
=> Tam giác AHM = Tam giác CHN (g - c - g).
Xét tam giác CMH và tam giác ANH có:
+ CH = AH (Tam giác AHM = Tam giác CHN).
+ \(\widehat{CHM}=\widehat{AHN}\) (đối đỉnh).
+ MH = NH (Tam giác AHM = Tam giác CHN).
=> Tam giác CMH = Tam giác ANH (c - g - c).
a: Xét ΔAMB và ΔEMC co
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAD cân tại B
=>BD=BA=CE
c: Xét ΔAMD có
MH vừa là đường cao, vừa là trung tuyến
nên ΔAMD cân tại M
tự vẽ hình
a) Xét ΔADE có :
HE là đường trung tuyến của AD HA=HD )(1)
Ta thấy HC=12BC ( AH là đường trung tuyến của BC )
Mà BC = CE (gt )
⇒HC=12CE (2)
Từ (1) và (2) ⇒C là trọng tâm của ΔADE
b) Hơi khó đấy :)
Xét ΔAHB và ΔAHC có :
HAHA chung
HB=HC ( AH là đường trung tuyến của BC )
AB=AC( ΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=1800
⇒AHB^=AHC^=1800/2=90o
Xét ΔAHEvà ΔHED có :
HEHE chung
HA=HD( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=900)
Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )
Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ
Dễ thấy MEHˆ=HEAˆ(cmt)
⇒MHEˆ=HEAˆ
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AE(đpcm)