K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAND có

AM vừa là đường cao, vừa là trung tuyến

=>ΔAND cân tại A

=>AB là phân giác của góc NAD(1)

Xét ΔADK có

AC vừa là đường cao, vừa là trung tuyến

=>ΔADK cân tại A

=>AC là phân giác của góc DAK(2)

Từ (1), (2) suy ra góc NAK=2*90=180 độ

=>N,A,K thẳng hàng

mà AN=AK

nên A là trung điểm của NK

đầu bài sai rồi

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA

Bài 1 : cho tam giác ABC vuông tại A điểm D thuộc cạnh huyền BC. Kẻ DH vuông với AC H thuộc AC trên tia đối của tia HD lấy điểm K sao cho HK=HD kẻ DM vuông với AB M thuộc AB trên tia đối của tia MA lấy điểm N sao choMN=MD chứng minh A là trung điểm của NK.                                                               Bài 2 : cho tam giác ABC có ba góc đều nhọn kẻ AH vuông góc BC tạ H kẻ...
Đọc tiếp

Bài 1 : cho tam giác ABC vuông tại A điểm D thuộc cạnh huyền BC. Kẻ DH vuông với AC H thuộc AC trên tia đối của tia HD lấy điểm K sao cho HK=HD kẻ DM vuông với AB M thuộc AB trên tia đối của tia MA lấy điểm N sao choMN=MD chứng minh A là trung điểm của NK.                                                               Bài 2 : cho tam giác ABC có ba góc đều nhọn kẻ AH vuông góc BC tạ H kẻ DH vuông góc với AB D thuộc AB trên tia đối của tia DH lấy điểm M sao cho DM=DH kẻ HE vuông góc với AC trên tia đối của tia EH lấy điểm N sao EH =EN.                                       a,Chứng minh AB,AC là trung trực của MH và NH                                                             b,chứng minh AM=AN.                                             c,Giả sử góc BAC vuông chứng minh MB//NC.                                                         Giúp mình với ! Cảm ơn !

0
23 tháng 1 2020

Đề sai rồi bạn. Tamhoa

25 tháng 2 2020

A M N B C F H D E I

Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(

a) Xét △AHB và △AHC có:

AHB = AHC (= 90o)

AH: chung

AB = AC (△ABC cân)

=> △AHB = △AHC (ch-cgv)

b) Xét △ADM và △ADH có:

ADM = ADH (= 90o)

DM = DH (gt)

AD: chung

=> △ADM = △ADH (2cgv)

=> AM = AH (2 cạnh tương ứng) (1)

Xét △ANE và △AHE có:

AEH = AEN (= 90o)

EH = EN (gt)

AE: chung

=> △ANE = △AHE (2cgv)

=> AN = AH (hai cạnh tương ứng) (2)

Từ (1) và (2) => AM = AN => △AMN cân tại A

Ta có: MAN = MAB + BAH + HAC + CAN

Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)

=> MAN = 2BAH + 2 HAC

=> MAN = 2BAC

=> BAC = 1/2MAN

c) Ta có: HAD = HAE (△AHB = △AHC)

Mà HAD = DAM, HAE = EAN

=> HAD + DAM = HAE + EAN

=> HAM = HAN

Gọi giao điểm AH và MN là F

Xét △AFM và △AFN có:

AF: chung

FAM = FAN (cmt)

AM = AN (cmt)

=> △AFM = △AFN (c.g.c)

=> AFM = AFN (2 góc tương ứng)

Mà AFM + AFN = 180o => AFM = AFN = 90o

=> AH vuông góc MN (1)

Gọi giao điểm của DE và AH là I

Xét △ADH và △AEH có:

ADH = AEH (= 90o)

AH: chung

HAD = HAE (△HAB = △HAC)

=> △ADH = △AEH (ch-gn)

=> AD = AE (2 cạnh tương ứng)

Xét △AID và △AIE có:

AI: chung

IAD = IAE (cmt)

AD = AE (cmt)

=> △AID = △AIE (c.g.c)

=> AID = AIE (2 góc tương ứng)

Mà AID + AIE = 180o => AID = AIE = 90o

=> AH vuông góc DE (2)

Từ (1) và (2) => MN // DE

25 tháng 2 2020

d) \(\Delta\)ABC cân tại A  có AH là đường cao

=> AH là đường trung tuyến

=> H là trung điểm BC 

=> BH = HC = BC : 2 = 3 ( cm )

\(\Delta\)ABH vuông tại H  => AB2 - BH2 = AH2 => AH = 4 cm

=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB 

=> 3.4 = HD . 5 => HD = 2,4 cm

\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD = 3,24 => BD = 1,8 cm