K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

DO đó: ABDC là hình bình hành

Suy ra: AB//CD

14 tháng 12 2021

\(a,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\\ b,\Delta MAB=\Delta MDC\\ \Rightarrow\widehat{MCD}=\widehat{MBA}\)

Mà 2 góc này ở vị trí so le trong nên \(AB\text{//}CD\)

\(c,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAC=\Delta MDB\left(c.g.c\right)\\ \Rightarrow AC=BD;\widehat{MCA}=\widehat{MBD}\)

Mà 2 góc này ở vị trí slt nên \(AC\text{//}BD\Rightarrow BD\bot AB\)

\(\left\{{}\begin{matrix}AC=BD\\\widehat{BAC}=\widehat{ABD}=90^0\\AB\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.g.c\right)\\ \Rightarrow BC=AD\\ d,MF\bot BD\Rightarrow MF\text{//}AB\\ BC=AD\\ \Rightarrow AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BM=MC\\ \Rightarrow\Delta AME\text{ cân tại }E\)

Mà ME là trung tuyến nên cũng là đường cao

Do đó \(ME\bot AC\Rightarrow ME\text{//}AB\)

Mà \(MF\text{//}AB\Rightarrow ME\equiv MF\)

Vậy M,E,F thẳng hàng

8 tháng 12 2021

a/  Xét △ABM và △DMC có:

\(\begin{matrix}AM=MD\left(gt\right)\\MB=MC\left(gt\right)\\\hat{AMB}=\hat{CMD}\left(đối\text{ }đỉnh\right)\end{matrix}\)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\) (đpcm).

b/ Ta có: \(\Delta AMB=\Delta DMC\left(cmt\right)\)

\(\Rightarrow\hat{MAB}=\hat{MDC}\); hai góc ở vị trí so le trong.

Vậy: AB // CD (đpcm).

c/ Xét △BAE có:

\(\begin{matrix}BH\perp AE\left(gt\right)\\AH=HE\left(gt\right)\end{matrix}\)

⇒ BH vừa là đường cao, vừa là đường trung tuyến.

⇒ △BAE cân tại B.

\(\Rightarrow BE=BA\). Mà \(AB=CD\left(\Delta AMB=\Delta DMC\right)\)

Vậy: BE = CD (đpcm).

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

16 tháng 12 2023

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

Ta có: AB//CD

AB\(\perp\)AC

Do đó: CD\(\perp\)CA

Xét ΔABC vuông tại A và ΔCDA vuông tại C có

AB=CD

AC chung

Do đó: ΔABC=ΔCDA

c: Ta có: ΔABC=ΔCDA

=>BC=DA

Xét ΔMCA và ΔMBD có

MC=MB

\(\widehat{CMA}=\widehat{BMD}\)(hai góc đối đỉnh)

MA=MD

Do đó: ΔMCA=ΔMBD

=>\(\widehat{MCA}=\widehat{MBD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

Ta có: AC//BD

AC\(\perp\)CD

Do đó: DC\(\perp\)DB

=>ΔDBC vuông tại D

a: Xét ΔBMD và ΔCMA có 

MB=MC

\(\widehat{BMD}=\widehat{CMA}\)

MD=MA
DO đó: ΔBMD=ΔCMA

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

15 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có

MB=MC

MA=MD

Do đó: ΔMBA=ΔMCD

=>\(\widehat{MBA}=\widehat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó: ΔBEM=ΔCFM

=>ME=MF 

ΔBEM=ΔCFM

=>\(\widehat{BME}=\widehat{CMF}\)

mà \(\widehat{BME}+\widehat{EMC}=180^0\)(hai góc kề bù)

nên \(\widehat{CMF}+\widehat{EMC}=180^0\)

=>F,M,E thẳng hàng

mà MF=ME

nên M là trung điểm của EF

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD và AB=CD

b: Xét ΔABC và ΔCDA có

AB=CD

BC=DA

AC chung

Do đó: ΔABC=ΔCDA
Suy ra: \(\widehat{ABC}=\widehat{CDA}\)

Suy ra: BC=DA

hay BC=2AM

c: Xét tứ giác BDAE có 

BD//AE
BD=AE

Do đó: BDAE là hình bình hành

Suy ra: BE//AM

d: Ta có: BDAE là hình bình hành

nên Hai đường chéo DE và BA cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của AB

nên O là trung điểm của DE

hay D,O,E thẳng hàng

12 tháng 2 2022

Cảm ơn bạn

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm