K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

2x-2x^2-5

=-(2x^2-2x+1)-4

=-(2x-1)^2-4

=(1-2x)^2-4

vì (1-2x)^2>0 với mọi x

=>(1-2x)^2-4>-4

dấu "=" xảy ra <=>1-2x=0=>x=1/2

vậy gtnn của đa thức là -4 khi x=1/2

15 tháng 7 2016

tr 10h à còn sớm

P=x2 - 2x + 5

=x2-2x+1+4

=(x-1)2+4

Ta thấy:\(\left(x-1\right)^2+4\ge0+4=4\)

Dấu = khi x=1

Vậy Pmin=4 <=>x=1

Q= 2x2 -6x 

\(=2x^2-6x+\frac{9}{2}-\frac{9}{2}\)

\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)

\(=2\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)-\frac{9}{2}\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)

Ta thấy:\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge0-\frac{9}{2}=-\frac{9}{2}\)

Dấu = khi x=3/2

Vậy Qmin=-9/2 <=>x=3/2

15 tháng 7 2016

P = x2 - 2x + 5 = x(x - 2) + 5 nhỏ nhất khi x(x - 2) nhỏ nhất .

Xét x(x - 2) < 0 (để nhỏ nhất) thì x và x - 2 khác dấu mà x > x - 2 nên x > 0 > x - 2 => 2 > x > 0 => x = 1 => x(x - 2) = -1

Vậy P min = -1 + 5 = 4

Q = 2x2 - 6x = 2x(x - 3) nhỏ nhất khi x(x - 3) nhỏ nhất

Xét x(x - 3) < 0 (để nhỏ nhất) thì x và x - 3 khác dấu mà x > x - 3 nên x > 0 > x - 3 => 3 > x > 0 => x = 1;2

Ta thấy x(x - 3) = -2 tại x = 1 và x = 2 nên [x(x - 3)]min = -2 => Qmin = -2.2 = -4

c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)

Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)

Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)

NV
21 tháng 4 2021

\(y=2+\dfrac{6}{x-3}\)

\(P=3x\left(2+\dfrac{6}{x-3}\right)+2x+2+\dfrac{6}{x-3}\)

\(P=8x+2+\dfrac{18x}{x-3}+\dfrac{6}{x-3}=8x+20+\dfrac{60}{x-3}\)

\(P=8\left(x-3\right)+\dfrac{60}{x-3}+44\ge2\sqrt{\dfrac{480\left(x-3\right)}{x-3}}+44=44+8\sqrt{30}\)

\(P_{min}=44+8\sqrt{30}\) khi \(8\left(x-3\right)=\dfrac{60}{x-3}\Leftrightarrow x=\dfrac{6+\sqrt{30}}{2}\)

22 tháng 4 2021

Dạ, em cảm ơn thầy ạ

16 tháng 1 2021

\(F=2x^2+y^2+2y\left(x+1\right)+\left(x+1\right)^2-x^2-2x-1-2x+2\)

\(=\left(y+x+1\right)^2+x^2-4x+1\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x;y\)

=> \(MinF=-3\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

 

16 tháng 7 2018

đa thức trên có nghiệm = 0

3: 

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

15 tháng 7 2016

\(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

=>Pmin=(x-1)2+4=4

<=>(x-1)2=0

<=>x-1=0

<=>x=1

Vậy Pmin=4 khi x=1

----------------------------------------------------------

\(Q=2x^2-6x=2\left(x^2-3x\right)=2\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

=>Qmin=\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}=-\frac{9}{2}\)

<=>\(2\left(x-\frac{3}{2}\right)^2=0\)

<=>\(\left(x-\frac{3}{2}\right)^2=0\)

<=>\(x-\frac{3}{2}=0\)

<=>\(x=\frac{3}{2}\)

Vậy Qmin=\(-\frac{9}{2}\) khi \(x=\frac{3}{2}\)

15 tháng 7 2016

Cảm ơn bạn nha