K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
26 tháng 2 2021

ta có 

\(2x+\frac{27}{x^2}=x+x+\frac{27}{x^2}\ge3\sqrt[3]{\frac{x.x.27}{x^2}}=9\)

dấu bằng xảy ra khi \(x=\frac{27}{x^2}\Leftrightarrow x=3\)

NV
8 tháng 7 2021

\(P=2x+\dfrac{27}{x^2}=x+x+\dfrac{27}{x^2}\ge3\sqrt[3]{\dfrac{27x^2}{x^2}}=9\)

\(P_{min}=9\) khi \(x=\dfrac{27}{x^2}\Leftrightarrow x=3\)

8 tháng 7 2019

Với x>0: \(B=x^2+\frac{1}{2x}=x^2+\frac{1}{4x}+\frac{1}{4x}\ge3\sqrt[3]{x^2.\frac{1}{4x}.\frac{1}{4x}}=\frac{3}{2\sqrt[3]{2}}\)(áp dụng bất đẳng thức AM-GM cho ba số)

Dấu '=' xảy ra khi \(x^2=\frac{1}{4x}\Leftrightarrow x^3=\frac{1}{4}\Leftrightarrow x=\frac{1}{\sqrt[3]{4}}.\)(p/s đừng k cho câu trả lời này nhé, mặc dù đúng 100%)

Tham khảo nhé :

Cho a b > 0 và  3a + 5b = 12,Tìm GTLN của P = ab,Cho a b c > 0 và  abc = 1,Chứng minh (a + 1)(b + 1)(c + 1) >= 8,Q = a^2 + b^2 + c^2,Toán há»c Lá»p 8,bà i tập Toán há»c Lá»p 8,giải bà i tập Toán há»c Lá»p 8,Toán há»c,Lá»p 8

28 tháng 7 2019

ê P ở đâu mà bảo người ta tham khảo?

17 tháng 10 2020

Áp dụng trực tiếp bất đẳng thức Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)+2\left(x+y+z\right)+3\left(x+y+z\right)}=1\)

Dấu bằng xảy ra khi \(x=y=z=2\)

17 tháng 10 2020

Áp dụng BĐT AM - GM cho 2 số dương, ta được: \(\frac{x^2}{x+2y+3z}+\frac{1}{36}\left(x+2y+3z\right)\ge2\sqrt{\frac{x^2}{x+2y+3z}.\frac{1}{36}\left(x+2y+3z\right)}=\frac{1}{3}x\Rightarrow\frac{x^2}{x+2y+3z}\ge\frac{11}{36}x-\frac{1}{18}y-\frac{1}{12}z\)Tương tự, ta có: \(\frac{y^2}{y+2z+3x}\ge\frac{11}{36}y-\frac{1}{18}z-\frac{1}{12}x\)\(\frac{z^2}{z+2x+3y}\ge\frac{11}{36}z-\frac{1}{18}x-\frac{1}{12}y\)

Cộng theo vế của 3 bất đẳng thức trên, ta được: \(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\ge\frac{1}{6}\left(x+y+z\right)=1\)

Đẳng thức xảy ra khi x = y = z = 2

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

28 tháng 2 2019

=> B = \(\frac{\left(x-1\right)^2+2010}{x^2}=\frac{\left(x-1\right)^2}{x^2}+\frac{2010}{x^2}\)

Vì \(\left(x-1\right)^2\ge0\)\(x^2\)\(\ge\)0 với mọi x 

=> để B bé nhất thì \(\frac{2010}{x^2}\)bé nhất

=> \(x^2\) lớn nhất

=> WTF bạn ghi sai đầu bài à ???

28 tháng 2 2019

Với cả đây là toán 6 mà 

31 tháng 8 2018

\(P=(3x/2+6/x)+(5y/2+10/y)+(x+y)/2 >=6+10+2=18\)