để tiến tới 30 năm ngày thành lập trường hội cựu học sinh trường Lương thế vinh đã đăng ký một phòng tại trường để găp mặt đại diện các khoá. Lúc đầu phòng có 120 ghế dc xếp thành từng dãy có số ghế trên một dãy như nhau nhưng thực tế phải xếp thêm một dãy và một dãy thêm hai ghế thì mới đủ chỗ cho 156 cựu học sinh vể dự .Hỏi lúc đầu phòng có bao nhiêu dãy và bao nhiêu ghế
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi dãy ghế lúc đầu là x (đk : x>0, x thuộc Z) thì số dãy ghế sau khi xếp lại là x+5
theo đề bài, ta có :
số ghế mỗi dãy lúc đầu là 120/x
số ghế mỗi dãy sau khi xếp lại là (120/x)-4 / x+5 = 120-4x / x(x+5)
ta có phương trình : 120/x - 4 = 120-4x / x(x+5)
<=> 120-4x / x = 120-4x / x(x+5)
<=> (120-4x)(x+5) / x(x+5) = 120-4x / x(x+5)
<=> (120-4x)(x+5)=120-4x
<=> (120-4x)(x+5) - (120-4x) = 0
<=> (120-4x)(x+5-1) = 0
<=> (120-4x)(x+4) = 0
<=> 120-4x = 0
x+4 =0
<=> x = 30 (thỏa đk)
x = -4 (ko thỏa đk)
vậy số dãy ghế ban đầu là 30
MÌNH GIẢI SAI MONG CÁC BẠN THÔNG CẢM VÀ SỬA JUP MIK!!
Gọi số dãy ghế lúc đầu là x (dãy ghế) Đk: x>2
Số ghế mỗi dãy lúc đầu là 210/x(ghế)
dãy ghế lúc sau là x+2(dãy ghế)
Số ghế mỗi dãy lúc sau là 272/x+2(ghế)
Vì thực tế phải xếp thêm mỗi dãy 2 ghế nên ta có pt:
(210/x)-(272/x+2)+2=0(1)
Giải pt (1) ta có: x1=15(TM),x2=14(TM)
Với số dãy ghế lúc đầu là 15 (dãy) suy ra mỗi dãy có số ghế là 14 (ghế)
Với số dãy ghế lúc đầu là 14 (dãy) suy ra mỗi dãy có số ghế là 15 (ghế)
Giả sử hội trường có a dãy và b là số ghế của mỗi dãy. (a,b∈N∗a,b∈N∗).
Ta có phương trình: ab=500ab=500 và
⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25
Vậy lúc đầu người ta định xếp 2525 dãy ghế.
Gọi x (dãy) là số dãy ghế ban đầu của phòng họp.
Điều kiện: x ∈N*
Khi đó số ghế ngồi trong một dãy là: 360/x (ghế)
số dãy ghế sau khi tăng là x + 1 (dãy)
số ghế ngồi trong một dãy sau khi tăng là:
Theo đề bài, ta có phương trình:
⇔ 400x – 360(x + 1) = x(x + 1)
⇔ 400x – 360x – 360 = x 2 + x ⇔ x 2 – 39x + 360 = 0
∆ = - 39 2 – 4.1.360 = 1521 – 1440 = 81 > 0
∆ = 81 = 9
Cả hai giá trị của x đều thỏa mãn điều kiện bài toán.
Vậy bình thường trong phòng có 15 hoặc 24 dãy ghế.
120 ghế
120 cái ghế