K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2015

giải :

Ta có : 3m2 + m = 4n2 + n 
tương đương với 4(m2 - n2) + (m - n) = m2 
hay là (m - n)(4m + 4n + 1) = m2 (*)

Gọi d là ước chung lớn nhất của m - n và 4m + 4n + 1 thì (4m + 4n + 1) + 4(m - n) chia hết cho d => 8m + 1 chí hết cho d.

Mặt khác, từ (*) ta có : m2 chia hết cho d2 => m chia hết cho d.

Từ 8m + 1 chia hết cho d và m chia hết cho d ta có 1 chia hết cho d => d = 1.

Vậy m - n và 4m + 4n + 1 là các số tự nhiên nguyên tố cùng nhau, thỏa mãn (*) nên chúng đều là các số chính phương. 

29 tháng 3 2015

câu trả lời này ở trên mạng đó!!!!

7 tháng 7 2016

Ta có : 3m2 + m = 4n2 + n 
tương đương với 4(m2 - n2) + (m - n) = m2 
hay là (m - n)(4m + 4n + 1) = m2 (*)

Gọi d là ước chung lớn nhất của m - n và 4m + 4n + 1 thì (4m + 4n + 1) + 4(m - n) chia hết cho d => 8m + 1 chí hết cho d.

Mặt khác, từ (*) ta có : m2 chia hết cho d2 => m chia hết cho d.

Từ 8m + 1 chia hết cho d và m chia hết cho d ta có 1 chia hết cho d => d = 1.

Vậy m - n và 4m + 4n + 1 là các số tự nhiên nguyên tố cùng nhau, thỏa mãn (*) nên chúng đều là các số chính phương. 

17 tháng 6 2015

3m2+m=4n2+n

=>(m-n)(4m+4n+1)=m2(1)(phân tích ra là về cái ban đầu nhé)

Gọi d là 1 ước chung của m-n và 4m+4n+1

=>(m-n)(4m+4n+1) chia hết cho d.d=d2

Từ (1) =>m2 chia hết cho d2

=>m chia hết cho d

Mà m-n cũng chia hết cho d => n chia hết cho d

=>4m+4n+1 chia d dư 1(vô lí vì d được giả sử là ước của 4m+4n+1)

=>4m+4n+1 và m-n nguyên tố cùng nhau

 khi phân tích a hoặc b có thừa số nguyên tố p với mũ lẻ mà 2 số này nguyên tố cùng nhau nên số còn lại không chưa p =>m2 bằng tích của p với 1 số khác p.Mà m2 là số chính phương nên điều trên là vô lí

=>m-n và 4m+4n+1 phải cùng là số chính phương(ĐPCM)

Hơi khó hiểu nhưng đúng đó Đây là mình cố giải thích cho bạn chứ thực ra k có dòng giải thích dài dài kia đâu

25 tháng 2 2018

Khó lắm

20 tháng 11 2019

Ta có : 

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow5m^2+m=5n^2+n+m^2\)

\(\Leftrightarrow5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\left(m-n\right)\left(5m+5n+1\right)=m^2\)

\(\Rightarrow\hept{\begin{cases}m-n⋮d\\5m+5n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}m^2=\left(m-n\right)\left(5m+5n+1\right)⋮d^2\\5\left(m-n\right)\left(5m+5n+1\right)⋮d\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}m⋮d\\10m+1⋮d\end{cases}\Rightarrow1⋮d\Rightarrow d=1}\)

Vậy \(m-n,5m+5n+1\) nguyên tố cùng nhau . Mà tích của chúng là một số chính phương nên bản thân \(m-n,5m+5n+1\) cũng là số chính phương ( đpcm)

Chúc bạn học tốt !!!

3 tháng 9 2021

4m2+m=5n2+n

{=}5m2+m=5n2+n+m2

{=}5(m2-n2)+(m-n)=m2

{=}(m-n)(5m+5n+1)=m2

3 tháng 9 2021

là sao

27 tháng 4 2018

bạn thi hsg ak bài nay dễ mak

có 4m^2+m=5n^2+n

<=>m-n+5m^2-5n^2=m^2

<=>(m-n)(5m+5n+1)=m^2         (1)

gọi ƯCLN(m-n;5m+5n+1)=d ta c/m d=1

có m-n chia hết d; m,n là các số tự nhiên

<=>5m-5n chia hết d

và có 5m+5n+1 chia hết d

=>10m+1 chia hết d                          (2)

(1)=> m^2 chia hết cho d 

=>m chia hết d (m là số tự nhiên)

=>10m chia hết cho d                        (3)

từ (2),(3)=>1 chia hết cho d

=>d =1                                              (4)

từ (1),(4)=>đpcm.

bài này phải áp dụng kiến thức lớp 6 vào .

27 tháng 4 2018

mik nhầm chút

(1)=> m^2 chia hết d^2

28 tháng 10 2015

4m+ m = 5n+ n <=> (5m2 - 5n2) + (m - n) = m<=> 5.(m - n).(m + n) + (m - n) = m2

<=> (m - n).(5m + 5n + 1) = m2  (1)

Gọi d = ƯCLN (m- n; 5m + 5n + 1) 

=> m - n chia hết cho d và 5m + 5n+ 1 chia hết cho d

=> m= (m - n).(5m + 5n + 1) chia hết cho d2

=> m chia hết cho d

lại có: 5.(m - n) + (5m + 5n + 1) = 10m + 1 chia hết cho d

10m chia hết cho d nên 1 chia hết cho d 

=> m - n và 5m + 5n + 1 nguyên tố cùng nhau    (2)

Từ (1)(2) => m - n; 5m + 5n + 1 đều là số chính phương

Ta có:

4m+ m

= 5n+ n

<=> (5m- 5n2) + (m - n) = m

<=> 5.(m - n).(m + n) + (m - n) = m2

<=> (m - n).(5m + 5n + 1) = m2  (*)

Gọi d = ƯCLN (m- n; 5m + 5n + 1) 

=> m - n chia hết cho d và 5m + 5n+ 1 chia hết cho d

=> m= (m - n).(5m + 5n + 1) chia hết cho d2

=> m chia hết cho d

Ta lại có: 5.(m - n) + (5m + 5n + 1) = 10m + 1 chia hết cho d

10m chia hết cho d nên 1 chia hết cho d 

=> m - n và 5m + 5n + 1 nguyên tố cùng nhau    (**)

Từ (*)(**) => m - n; 5m + 5n + 1 đều là số chính phương

hok tốt

26 tháng 10 2015

Mk muốn giúp bạn lắm nhưng mà chưa học đến, sory nha

26 tháng 10 2015

4m2+m=5m2+n suy ra m= 5m2+n-4m2= m2+n

ta có m-n

m2+n -n=m2 là một số chính phương