Cho 3 số thực dương x,y,z thỏa mãn x2 +y3++z4= 1. Chứng minh x5+y6+z7<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$
Mà:
$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$
$=(-z)^3-3xy(-z)+z^3=3xyz$
Và:
\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)
\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)
\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)
Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)
\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)
Ta có đpcm.
Do \(x^2+y^2+z^2=1\Rightarrow x^2< 1\Rightarrow x< 1\)
\(\Rightarrow x^5< x^2\)
Tương tự ta có: \(y< 1\Rightarrow y^6< y^2\); \(z< 1\Rightarrow z^7< z^2\)
\(\Rightarrow x^5+y^6+z^7< x^2+y^2+z^2\)
\(\Rightarrow x^5+y^6+z^7< 1\)
Ta cần chứng minh:\(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\sqrt{3}\)
Áp dụng bất đẳng thức Bunhiacopxki, ta được:
\(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\dfrac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\)
Mặt khác, ta có:
\(\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(\left(x+y+xy\right)+\left(y+z+yz\right)+\left(z+x+zx\right)\right)\)
\(\Leftrightarrow\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(6+xy+yz+zx\right)\)Lại có:
\(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{9}{3}=3\)
\(\Rightarrow\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(6+3\right)=27\)
\(\Rightarrow\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\le3\sqrt{3}\)
\(\Rightarrow\dfrac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\ge\dfrac{9}{3\sqrt{3}}=\sqrt{3}\)
Do đó \(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\sqrt{3}\)
Dấu bằng xảy ra \(\Leftrightarrow x=y=z=1\).
Đặt vế trái của BĐT cần chứng minh là P
Ta có:
\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)
\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y\)
Với mọi x;y;z ta luôn có:
\(\left(x+y-1\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+2xy-2x-2y+1+z^2-z+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow x^2+y^2+z^2+\dfrac{5}{4}+2xy-2x-2y-z\ge0\)
\(\Leftrightarrow2+2xy-2x-2y\ge z\)
\(\Leftrightarrow2\left(1-x\right)\left(1-y\right)\ge z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xy+xz}=\dfrac{4}{x\left(y+z\right)}\)(1)
Áp dụng bất đẳng thức AM-GM ta có :
\(x\left(y+z\right)\le\dfrac{\left(x+y+z\right)^2}{4}=4\)=> \(\dfrac{1}{x\left(y+z\right)}\ge\dfrac{1}{4}\)=> \(\dfrac{4}{x\left(y+z\right)}\ge1\)(2)
Từ (1) và (2) => \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x\left(y+z\right)}\ge1\)=> \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)(đpcm)
Đẳng thức xảy ra <=> x = 2 ; y = z = 1
\(VT=\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{z}\left(\dfrac{4}{x+y}\right)=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(z+x+y\right)^2}\ge16\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)