K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

mk làm được rùi ko cần giải đâu nhé

27 tháng 8 2019

\(12=3a+5b\ge2\sqrt{15ab}\)

Suy ra \(\sqrt{ab}\le\frac{12}{2\sqrt{15}}\Rightarrow M=ab\le\frac{12}{5}\)

Đẳng thức xảy ra  khi \(\hept{\begin{cases}3a=5b\\3a+5b=12\end{cases}}\Rightarrow\hept{\begin{cases}a=2\\b=\frac{6}{5}\end{cases}}\)

1 tháng 4 2023

\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (do a,b,c là các số dương)

Áp dụng BĐT Bunhiacopxki dạng phân thức:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{6^2}{a+2b+3c}\)

\(\Rightarrow\dfrac{36}{a+2b+3c}\le\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\left(1\right)\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{36}{b+2c+3a}\le\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{3}{a}\left(2\right)\\\dfrac{36}{c+2a+3b}\le\dfrac{1}{c}+\dfrac{2}{a}+\dfrac{3}{b}\left(3\right)\end{matrix}\right.\)

Lấy (1) + (2) + (3) ta được:

\(36F\le6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=6.3=18\)

\(\Rightarrow F\le\dfrac{1}{2}\)

MaxF=1/2 khi \(a=b=c=1\)

24 tháng 2 2016

Chi biet phan 5 thoi @

      Vi 3a=5b=12suy ra a=4 ;b=2,4  ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6

25 tháng 2 2016

nguyen xuan duong sr minh viet nham dau bai 3a-5b=12

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

23 tháng 2 2022

Áp dụng BĐT Côsi cho 2 số dương, ta có:

\(3a+5b=12\ge2\sqrt{3a.5b}=2\sqrt{15ab}\)

\(\Leftrightarrow\sqrt{15ab}\le6\)

\(\Leftrightarrow ab\le\dfrac{36}{15}\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)

 

23 tháng 2 2022

cám ơn

28 tháng 10 2023

Theo BĐT cosi ta có:

\(3a+5b\ge2\sqrt{3a\cdot5b}\)

\(\Leftrightarrow3a+5b\ge2\sqrt{15ab}\)

\(\Leftrightarrow12\ge2\sqrt{15ab}\)

\(\Leftrightarrow\sqrt{15ab}\le\dfrac{12}{2}\)

\(\Leftrightarrow\sqrt{15ab}\le6\)

\(\Leftrightarrow15ab\le36\)

\(\Leftrightarrow ab\le\dfrac{36}{15}\)

\(\Leftrightarrow ab\le\dfrac{12}{5}\)

\(\Rightarrow P\le\dfrac{12}{5}\)

Vậy: \(P_{max}=\dfrac{12}{5}\)

28 tháng 10 2023
Để tìm giá trị lớn nhất của tích P = ab, ta có thể sử dụng phương pháp đạo hàm. Đầu tiên, ta sẽ giải hệ phương trình 3a + 5b = 12 để tìm giá trị của a và b. 3a + 5b = 12 Tiếp theo, ta sẽ giải phương trình trên theo a: 3a = 12 - 5b a = (12 - 5b)/3 Sau đó, ta sẽ thay giá trị của a vào biểu thức tích P = ab: P = ((12 - 5b)/3) * b Tiếp theo, ta sẽ đạo hàm của P theo b: dP/db = (12 - 5b)/3 - (5b)/3 Để tìm giá trị lớn nhất của P, ta sẽ giải phương trình dP/db = 0: (12 - 5b)/3 - (5b)/3 = 0 12 - 5b - 5b = 0 12 - 10b = 0 10b = 12 b = 12/10 b = 6/5 Sau đó, ta sẽ thay giá trị của b vào biểu thức tích P = ab: P = ((12 - 5(6/5))/3) * (6/5) P = (12 - 6)/3 * 6/5 P = 6/3 * 6/5 P = 12/5 Vậy, giá trị lớn nhất của tích P = ab là 12/5....