K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

\(12=3a+5b\ge2\sqrt{15ab}\)

Suy ra \(\sqrt{ab}\le\frac{12}{2\sqrt{15}}\Rightarrow M=ab\le\frac{12}{5}\)

Đẳng thức xảy ra  khi \(\hept{\begin{cases}3a=5b\\3a+5b=12\end{cases}}\Rightarrow\hept{\begin{cases}a=2\\b=\frac{6}{5}\end{cases}}\)

10 tháng 9 2016

kết quả của mk là a.b=0 \(\Leftrightarrow a=4;b=0\)

20 tháng 2 2017

a)\(A=a^3-b^3-ab=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)

\(A=a^2+ab+b^2-ab=a^2+b^2\ge0\)

\(minA=0\Leftrightarrow a=b=0\)

b)\(3a+5b=12\Leftrightarrow3a=12-5b\)

\(3B=3ab=\left(12-5b\right).b=-5b^2+12b\)

\(3B=-5b^2+12b-7,2+7,2=-\frac{1}{5}\left(5b-6\right)^2+7,2\le7,2\) \(\Leftrightarrow B\le2,4\)

\(maxB=2,4\Leftrightarrow b=1,2\Leftrightarrow a=2\)

14 tháng 7 2016

1) \(A=\frac{12}{4+x+\sqrt{x}}\) . Điều kiện xác định là \(x\ge0\)

Nhận thấy A đạt giá trị lớn nhất khi \(\frac{1}{A}\)đạt giá trị nhỏ nhất.

Ta xét \(\frac{1}{A}=\frac{x+\sqrt{x}+4}{12}=\frac{x}{12}+\frac{\sqrt{x}}{12}+\frac{1}{3}\)

Vì điều kiện xác định \(x\ge0\) nên ta có \(\frac{1}{A}\ge\frac{1}{3}\)

\(\Rightarrow A\le3\)

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy A đạt giá trị lớn nhất là 3 tại x = 0

2) Từ \(6a^2-15ab+5b^2=0\) , chia cả hai vế của đẳng thức cho \(b^2\ne0\) được : 

\(6\left(\frac{a}{b}\right)^2-15.\frac{a}{b}+5=0\) . Đặt \(x=\frac{a}{b}\) , phương trình trở thành :

\(6x^2-15x+5=0\Leftrightarrow\orbr{\begin{cases}x=\frac{15+\sqrt{105}}{12}\\x=\frac{15-\sqrt{105}}{12}\end{cases}}\)

Đến đây xét từng trường hợp của x rồi biểu diễn b theo a và thay vào D là xong.

(Chắc đây là đề thi Casio nên kết quả sẽ rất lẻ)