K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

\(A=\sqrt{\left(a-3\right)^2}+2a\)

\(=a-3+2a=3a-3=3.\left(a-1\right)\)

\(B=\sqrt{\left(a-5\right)^2}+5\)

\(=a-5+5=a\)

4 tháng 3 2016

\(A=\sqrt{\left(a-3\right)^2}+2a=a-3+2a=3a-3\)

\(B=\sqrt{\left(a-5\right)^2+5}=a-5+5=a\)

a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)

\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)

\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)

=-a-1

b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)

\(=\left|3a-5\right|-2a+4\)

\(=5-3a-2a+4\)

=9-5a

c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)

\(=4a-3-\left|2a-1\right|\)

\(=4a-3-2a+1\)

\(=2a-2\)

d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)

\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)

\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)

\(=-a^2\)

28 tháng 6 2021

`M=sqrt{(3a-1)^2}+2a-3`

`=|3a-1|+2a-3`

`=3a-1+2a-3(do \ a>=1/3)`

`=5a-4`

`N=sqrt{(4-a)^2}-a+5`

`=|4-a|-a+5`

`=a-4-a+5(do \ a>4)`

`=1`

`I=sqrt{(3-2a)^2}+2-7`

`=|3-2a|-5`

`=3-2a-5(do \ a<3/2)`

`=-2-2a`

`K=(a^2-9)/4*sqrt{4/(a-2)^2}`

`=(a^2-9)/4*|2/(a-2)|`

`=(a^2-9)/(2|a-2|)`

Nếu `3>a>2=>|a-2|=a-2`

`=>K=(a^2-9)/(2(a-2))`

Nếu `a<2=>|a-2|=2-a`

`=>K=(a^2-9)/(2(2-a))`

28 tháng 6 2021

\(M=\left|3a-1\right|+2a-3\)

\(a-\dfrac{1}{3}\ge0\)

\(\Rightarrow M=3a-1+2a-3=5a-4\)

\(N=\left|4-a\right|-a+5\)

\(4-a< 0\)

\(\Rightarrow N=a-4-a+5=1\)

\(I=\left|3-2a\right|-5\)

\(a-\dfrac{3}{2}< 0\)

\(\Rightarrow I=3-2a-5=-2a-2\)

K, Ta có : \(a-3< 0\)

\(\Rightarrow K=\dfrac{2\left(a^2-9\right)}{4\left|a-2\right|}=\dfrac{\left(a-3\right)\left(a+3\right)}{\left|2a-4\right|}\)
 

24 tháng 9 2020

\(B\sqrt{2}=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)\(=\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|-2=\sqrt{5}+1-\sqrt{5}+1-2=0\Rightarrow B=0\)

\(C=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(1-\sin^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(1-\cos^2a\right)\)

\(=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(\cos^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(\sin^2a\right)\)

\(=\frac{\sin^2a+\cos^2a}{\cos^2a}.\cos^2a+\frac{\cos^2a+\sin^2a}{\sin^2a}.\sin^2a\)

\(=\frac{1}{\cos^2a}.\cos^2a+\frac{1}{\sin^2a}\sin^2a=2\)

24 tháng 9 2020

  Bạn dùng theo công thức này  

\(\sqrt{m+n\sqrt{p}};\sqrt{m-n\sqrt{p}}\)   

Dùng pt bậc 2 

\(a=1;b=-m;c=\frac{\left(n\sqrt{p}\right)^2}{4}\) 

Nghiệm x1 ; x2 

\(\sqrt{\left(\sqrt{x1}+\sqrt{x2}\right)^2};\sqrt{\left(\sqrt{x1}-\sqrt{x2}\right)^2}\) 

\(B=\sqrt{\left(\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)^2}-\sqrt{2}\) 

\(=|\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}|-|\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}|-\sqrt{2}\) 

\(=\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}-\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)-\sqrt{2}\) 

\(=2\cdot\sqrt{\frac{1}{2}}-\sqrt{2}\) 

\(=\sqrt{2}-\sqrt{2}=0\)

C. 

\(=\frac{1}{cos^2a}\cdot cos^2a+\frac{1}{sin^2a}\cdot sin^2a\) 

\(=1+1=2\)

15 tháng 7 2017

a) \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=-10\sqrt{2}+5.2-\left(18-30\sqrt{2}+25\right)\)

\(=-10\sqrt{2}+10-18+30\sqrt{2}-25\)

\(=20\sqrt{2}-33\)

b) câu b đề sai

16 tháng 7 2017

câu a, \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2=-10\sqrt{2}+5.2-\left(8-30\sqrt{2}+25\right)\)

= \(-33+20\sqrt{2}\)

27 tháng 7 2017

a, \(\sqrt{\left(2-\sqrt{5}\right)^2}=\sqrt{5}-2\left(\sqrt{5}>2\right)\)

b, \(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\left(3>\sqrt{2}\right)\)

c, Với a < 3

\(\sqrt{\left(a-3\right)^2}+\left(a-9\right)=3-a+a-9=-6\)

d, \(A=\sqrt{\left(2a+5\right)^2}-\left(2a-7\right)\)

\(=\left|2a+5\right|-2a+7\)

+) Xét \(x\ge\dfrac{-5}{2}\) có:

\(A=2a+5-2a+7=12\)

+) Xét \(x< \dfrac{-5}{2}\) có:
\(A=-2a-5-2a+7=-4a+2\)

Vậy...

27 tháng 7 2017

\(a,A=\sqrt{5}-2\\ b,B=3-\sqrt{2}\\ c,C=3-a+a-9\\ =-6\\ d,D=2a+5-2a+7\\ =12\)

15 tháng 12 2019

\(2\sqrt{3a}-\sqrt{75a}+a\sqrt{\frac{6}{5}.\frac{5}{2a}}-\frac{2}{5}\sqrt{300a^3}\)

\(=2\sqrt{3a}-5\sqrt{3a}+a\sqrt{\frac{3}{2}}-\frac{2}{5}.10.a\sqrt{3a}\)

\(=-3\sqrt{3a}+\sqrt{\frac{3}{a}.a^2-4\sqrt{3a}}\)

\(=-3\sqrt{3a}+\sqrt{3a}-4a\sqrt{3a}\)

\(=-2\sqrt{3a}-4a\sqrt{3a}\)

\(=-2\sqrt{3a}\left(1+2a\right)\)

31 tháng 10 2021

\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)