K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

\(A=\sqrt{\left(a-3\right)^2}+2a\)

\(=a-3+2a=3a-3=3.\left(a-1\right)\)

\(B=\sqrt{\left(a-5\right)^2}+5\)

\(=a-5+5=a\)

4 tháng 3 2016

\(A=\sqrt{\left(a-3\right)^2}+2a=a-3+2a=3a-3\)

\(B=\sqrt{\left(a-5\right)^2+5}=a-5+5=a\)

8 tháng 12 2015

A=|a-3|+2a xét 2 trường hợp:

với a<0 ta có:  3-a+2a=3+a

với a>0 ta có: a-3+2a=3a-3=3(a-1). tích mk đi ủng hộ mk. mk vừa bị trừ điểm xong huhu

AH
Akai Haruma
Giáo viên
21 tháng 6 2018

Bài 2:

Để \(x^4+ax^3+b\vdots x^2-1\) thì \(x^4+ax^3+b\) phải được viết dưới dạng :

\(x^4+ax^3+b=(x^2-1)Q(x)\) với $Q(x)$ là đa thức thương.

Thay $x=1$ và $x=-1$ lần lượt ta có:

\(\left\{\begin{matrix} 1+a+b=(1^2-1)Q(1)=0\\ 1-a+b=[(-1)^2-1]Q(-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=-1\\ -a+b=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=0\\ b=-1\end{matrix}\right.\)

PP 2 xin đợi bạn khác giải quyết :)

AH
Akai Haruma
Giáo viên
21 tháng 6 2018

Bài 3:

Ta có: \(\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{9-4\sqrt{5}}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{5+4-4\sqrt{5}}}\)

\(=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{(2-\sqrt{5})^2}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9(\sqrt{5}-2)}=\frac{\sqrt{3}(2-3-4)}{-17+8\sqrt{5}}=\frac{-5\sqrt{3}}{-17+8\sqrt{5}}\)

\(=\frac{5\sqrt{3}}{17-8\sqrt{5}}\)

10 tháng 7 2016

Xét \(M=\left(2a+1\right)^2+\left(2a+3\right)^2=4a^2+4a+1+4a^2+12a+9=8a^2+16a+10.\)

\(M=8\left(a+1\right)^2+2=2\left(4\left(a+1\right)^2+1\right)\)

4(a + 1)2 + 1 là 1 số lẻ => M chia hết cho 2 mà không chia hết cho 4.

Hay M khi phân tích ra thừa số nguyên tố thì thừa số 2 có số mũ lẻ (=1) nên M không phải là số chính phương.

=> \(\sqrt{M}\)là số vô tỷ, hay \(\sqrt{M}\in I\)đpcm

10 tháng 7 2016

khó thế

4 tháng 10 2017

\(A=\)bn ghi lại đề nha mình lười

\(=\left(\sqrt{5+\sqrt{21}}\right)^2\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\left(\sqrt{5+\sqrt{21}}\right)\left(\sqrt{5-\sqrt{21}}\right)\left(\sqrt{5+\sqrt{21}}\right)\left(\sqrt{14}-\sqrt{6}\right)\)

\(=\left(\sqrt{\left(5^2-21\right)}\right)\left(\sqrt{5+\sqrt{21}}\right)\left(\sqrt{14}-\sqrt{6}\right)\)

\(=2.\left(\sqrt{5+\sqrt{21}}\right)\sqrt{2}.\left(\sqrt{7}-\sqrt{3}\right)\)

\(=2.\left(\sqrt{10+2\sqrt{21}}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=2.\left(\sqrt{7+2\sqrt{21}+3}\right) \left(\sqrt{7}-\sqrt{3}\right)\)

\(=2.\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\left(\sqrt{7}-\sqrt{3}\right)\)

\(=2.\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)=2.\left(7-3\right)=2.4=8\)

tíck mình nha bn thanks nhìu !!!!!!!!!

24 tháng 7 2017

a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}\)

\(=5+5-3-3\)

\(=4\)

b) \(\left(\sqrt{4^2}+\sqrt{\left(-4\right)^2}\right).\sqrt{4^{-3}}-\sqrt{3^{-4}}\)

\(=\left(4+4\right).\frac{1}{8}-\frac{1}{9}\)

\(=8.\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}\)

\(=\frac{8}{9}\)