Trên bảng có viết 2010 số: 1, 2,……., 2010. Cho phép xóa hai số bất kỳ trong những số trên bảng và viết thêm một số bằng tổng của hai số đó(như vậy sau mỗi lần xóa thì các số được viết trên bảng giảm đi 1). Chứng tỏ rằng 2009 lần xóa trên bảng sẽ còn lại một số lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Em tham khảo tại đây nhé:
Câu hỏi của Nguyễn Lê Hoàng - Toán lớp 5 - Học toán với OnlineMath
Sau mỗi lần xóa hai số bất kì, ta viết thêm vào bảng số bằng tổng của hai số đó do đó sau mỗi lần xóa, tổng của các số trên bảng là không đổi.
Sau \(2019\)lần xóa, số trên bảng sẽ là tổng của tất cả các số ban đầu.
Số trên bảng lúc này là: \(1+2+3+...+2020=\frac{2020.2021}{2}=2041210\)
Vậy ta có đpcm.
Có thể là có. Bởi vì khi bạn xóa 2 số cuối thì được hiệu là 1 (vì là 2014 và 2015), rồi 2 số 2011 và 2013, 2012 và 2009,... thì bạn sẽ ra được hiệu là 1,2,3,4,... và ra hiệu là 0 với các số 1,2,3,4,... cho sẵn.
Mong rằng là đúng! (bạn có thể hỏi giáo viên của OLM bằng cách gửi tin nhắn theo địa chỉ: http://olm.vn/thanhvien/loanloan92 (tên đăng nhập là loanloan92 đó!!!)
CHÚC BẠN HỌC TỐT!
mik xin loi co the chu
2015-2014=1
2013-2012=1
cu the tren bang co
(2015-1):2=1007 con so 1
cong voi con so 1 con du ra thi co 1008 con so 1
roi tru xoa them
1008:2=504 con so 1
thi ta seco 504 con so 0
ma 0-0 =0 nen tren bang van co the co con so 0
+ Nếu xóa đi 2 số chẵn, thì tổng của 2 số bị số sẽ là một số chẵn. Suy ra sau khi thực hiện số các số lẻ trên bảng không thay đổi.
+ Nếu xóa đi 1 số chẵn và 1 số lẻ, thì tổng của 2 số bị số sẽ là một số lẻ. Suy ra sau khi thực hiện số các số lẻ trên bảng không thay đổi.
+ Nếu xóa đi 2 số lẻ, thì tổng của 2 số bị số sẽ là một số chẵn. Suy ra sau khi thực hiện số các số lẻ trên bảng giảm đi 2 số.
+ Theo giả thiết số các số lẻ là 5, nên sau mỗi lần thực hiện trên bảng luôn còn có số lẻ.
+ Sau mỗi lần thực hiện, số các số trên bảng giảm đi 1. Vậy sau lần thực hiện thứ 9 thì trên bảng còn lại duy nhất một số và "Số đó là số lẻ" (là tổng của 10 số đã cho).
+ Nếu xóa đi 2 số chẵn, thì tổng của 2 số bị số sẽ là một số chẵn. Suy ra sau khi thực hiện số các số lẻ trên bảng không thay đổi.
+ Nếu xóa đi 1 số chẵn và 1 số lẻ, thì tổng của 2 số bị số sẽ là một số lẻ. Suy ra sau khi thực hiện số các số lẻ trên bảng không thay đổi.
+ Nếu xóa đi 2 số lẻ, thì tổng của 2 số bị số sẽ là một số chẵn. Suy ra sau khi thực hiện số các số lẻ trên bảng giảm đi 2 số.
+ Theo giả thiết số các số lẻ là 5, nên sau mỗi lần thực hiện trên bảng luôn còn có số lẻ.
+ Sau mỗi lần thực hiện, số các số trên bảng giảm đi 1. Vậy sau lần thực hiện thứ 9 thì trên bảng còn lại duy nhất một số và "Số đó là số lẻ" (là tổng của 10 số đã cho).
Chào bạn, nếu bạn đã học nguyên lí bất biến thì có thể giải theo cách sau:
Coi mỗi số chắn là 1, mỗi số lẻ là -1. Theo bài ra, ta có:
Số số lẻ là: (2009 - 1) : 2 + 1 = 1005 (số)
Số số chẵn là: (2010 - 2) : 2 + 1 = 1005 (số)
Do vậy, tích của các số mình đã coi là (-1)1005.11005 = -1
Chúng ta có 3 trường hợp:
(a) Chọn ra 2 số chẵn, suy ra sau mỗi lần thay đổi, số số chẵn giảm đi 1
Vậy tích lúc đó là -1 (không thay đổi giá trị khi chia cho 1)
(b) Chọn ra 2 số lẻ, suy ra số số lẻ giảm đi 2 là số số chẵn tăng lên 1
Vậy tích lúc đó vẫn là -1
(c) Chọn ra một số lẻ một số chẵn, số số lẻ không thay đổi, số số chẵn giảm đi 1
Vậy tích lúc đó vẫn là -1
Do đó, dù có thay đổi thế nào thì tích vẫn là -1, tức là khi còn lại một số trên bảng, tích vẫn là -1.
Vì thế số cuối cùng là số lẻ.
Chúc bạn học vui!
K.K.K
Anh học lớp 9 rồi mà cũng ko hiểu mày làm kiểu chi