K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

=> |-2x + 3 |.|5 + 4x| = 19 

vì |-2x + 3 |.|5 + 4x| lớn hơn hoặc bằng 0

=> x,0 <=> x<15

mà x>19             ko hợp lý

=> các số nguyên x thỏa mãn là 0

29 tháng 7 2017

=> |-2x + 3 |.|5 + 4x| = 19 

vì |-2x + 3 |.|5 + 4x| lớn hơn hoặc bằng 0

=> x,0 <=> x<15

mà x>19 (vô lý)

=> các số nguyên x thỏa mãn là 0

12 tháng 5 2017

Giải:

Nhân cả 2 vế của phương trình với \(2.3.4\) ta được:

\(\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.2.3.4\)

\(\Rightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=11.10.9.8\)

\(VT\) là 4 số nguyên liên tiếp khác 0 nên các thừa số phải cùng dấu \(\left(+\right)\) hoặc \(\left(-\right)\)

Suy ra: \(\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=11.10.9.8\left(1\right)\)

Và \(\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=11.\left(-10\right).\left(-9\right).\left(-8\right)\left(2\right)\)

Từ \(PT\left(1\right)\Leftrightarrow12x-1=11\Leftrightarrow x=1\left(TM\right)\)

Từ \(PT\left(2\right)\Leftrightarrow12x-1=-8\Leftrightarrow x=\frac{-7}{12}\left(L\right)\)

Vậy \(x=1\) thỏa mãn phương trình

30 tháng 10 2019

Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô

\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)

\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)

\(\Leftrightarrow x^2-y-xy+x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)

+) x = -1 suy ra y = 1

+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

30 tháng 10 2019

ai tích mình sai vậy ạ, xin lí do

18 tháng 12 2016

Khai triển: \(\left(x+y\right)^2+\left(xy-1\right)\left(x+y\right)+\left(xy-5\right)=0\).

Ta coi như là một phương trình bậc hai ẩn \(x+y\).

\(\Delta=\left(xy-1\right)^2-4\left(xy-5\right)=\left(xy-3\right)^2+12\)

Để phương trình có nghiệm nguyên thì \(\Delta\) chính phương, cộng với \(\left(xy-3\right)^2\) đã là một số chính phương.

Nghĩa là ta cần tìm 2 số chính phương hơn kém nhau 12 đơn vị. Đó là số 4 và 16.

Tức là \(\left(xy-3\right)^2=4\) (số chính phương nhỏ hơn)

Hay \(xy=5\) hoặc \(xy=1\).

Thử lại thì \(x=y=1\) hoặc \(x=y=-1\)

17 tháng 11 2016

khá là "dễ" chỉ cần nhân tùm lum hết ra r` phân tích lại dc

pt<=>-(x+2006)(64x2+256959x+257921626)=0

<=>x=-2006

17 tháng 11 2016

cùi mía quá em ơi

DD
16 tháng 5 2021

\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)

Từ đây bạn xét các trường hợp và giải ra nghiệm.