Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đổi pt thành : y^2 - (x^2)y + x^4 -81001 = 0
Lập denta của pt ẩn y ta được denta bằng : 324004 - 3 x^4.
Để pt có nghiệm y thì denta lớn hơn hoặc bằng 0
Từ đó suy ra 18 >= x >= -18
t i c k nhé!! 436565667676879867856735623626356562442516576678768987978
2) ĐK: x;y ∈ Z
pt ⇔ \(\left(x-y\right)^2+\left(y-1\right)\left(y-3\right)=0\)
=> I) a) x-y=0 => x=y
b) y-1=0 => y=1 => x=y=1(nhận)
II) a) x-y=0 => x=y
b) y-3=0 => y=3 => x=y=3(nhận)
\(Q=\left(1+\frac{\alpha}{x}\right)\left(1+\frac{\alpha}{y}\right)\left(1+\frac{\alpha}{z}\right)=\left(\frac{\alpha+x}{x}\right)\left(\frac{\alpha+y}{y}\right)\left(\frac{\alpha+z}{z}\right)\)
Mà \(\alpha=x+y+z\) (theo gt) nên ta có thể viết \(Q\) như sau:
\(Q=\left(\frac{2x+y+z}{x}\right)\left(\frac{x+2y+z}{y}\right)\left(\frac{x+y+2z}{z}\right)=\left(2+\frac{y+z}{x}\right)\left(2+\frac{x+z}{y}\right)\left(2+\frac{x+y}{z}\right)\)
Đặt \(a=\frac{y+z}{x};\) \(b=\frac{x+z}{y};\) và \(c=\frac{x+y}{z}\) \(\Rightarrow\) \(a,b,c>0\)
Khi đó, biểu thức \(Q\) được biểu diễn theo ba biến \(a,b,c\) như sau:
\(Q=\left(2+a\right)\left(2+b\right)\left(2+c\right)=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc+8\)
\(\Rightarrow\) \(Q-8=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc\)
Mặt khác, ta lại có:
\(a+b+c=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)
nên \(a+b+c+3=\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)
\(\Rightarrow\) \(a+b+c+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Lại có: \(\hept{\begin{cases}x+y+z\ge3\sqrt[3]{xyz}\text{ (1)}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\text{ (2)}\end{cases}}\) (theo bđt \(Cauchy\) lần lượt cho hai bộ số gồm các số không âm)
Nhân hai bđt \(\left(1\right);\) và \(\left(2\right)\) vế theo vế, ta được bđt mới là:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
Theo đó, \(a+b+c+3\ge9\) tức là \(a+b+c\ge6\)
\(\Rightarrow\) \(4\left(a+b+c\right)\ge24\) \(\left(\alpha\right)\)
Bên cạnh đó, ta cũng sẽ chứng minh \(abc\ge8\) \(\left(\beta\right)\)
Thật vậy, ta đưa vế trái bđt cần chứng minh thành một biểu thức mới.
\(VT\left(\beta\right)=abc=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{xyz}=\frac{8xyz}{xyz}=8=VP\left(\beta\right)\)
Vậy, bđt \(\left(\beta\right)\) được chứng minh.
Từ đó, ta có thể rút ra được một bđt mới.
\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge3\sqrt[3]{8^2}=12\) (theo cách dẫn trên)
\(\Rightarrow\) \(2\left(ab+bc+ca\right)\ge24\) \(\left(\gamma\right)\)
Cộng từng vế 3 bđt \(\left(\alpha\right);\) \(\left(\beta\right)\) và \(\left(\gamma\right)\), ta được:
\(Q-8\ge24+8+24=56\)
Do đó, \(Q\ge64\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=b=c\) \(\Leftrightarrow\) \(x=y=z=2\)
Vậy, \(Q_{min}=64\) khi \(\alpha=6\)
Đặt \(A=\sqrt{a^2-1}+\sqrt{b^2+ab+3}\)
Điều kiện \(a,b\inℤ\); \(\orbr{\begin{cases}a\ge1\\a\le-1\end{cases}}\)và \(b^2+ab+3\ge0\)
Để A là số nguyên thì \(a^2-1\)và \(b^2+ab+3\)đều phải là các số chính phương.
Đặt \(\hept{\begin{cases}a^2-1=k^2\left(k\inℤ\right)\\b^2+ab+3=n^2\left(n\inℤ\right)\end{cases}}\)
Ta có: \(a^2-1=k^2\Leftrightarrow a^2-k^2=1\Leftrightarrow\left(a-k\right)\left(a+k\right)=1\)
Ta lập bảng sau:
\(a-k\) | 1 | -1 |
\(a+k\) | 1 | -1 |
\(a\) | 1 (nhận) | -1 (nhận) |
\(k\) | 0 | 0 |
Vậy \(a=\pm1\)
Khi \(a=1\)thì \(b^2+ab+3=b^2+b+3=n^2\)
\(\Leftrightarrow4b^2+4b+12=4n^2\Leftrightarrow4b^2+4b+1-4n^2=-11\Leftrightarrow\left(2b+1\right)^2-\left(2n\right)^2=-11\)
\(\Leftrightarrow\left(2b+1-2n\right)\left(2b+1+2n\right)=-11\)
Ta lại lập bảng giá trị:
2b+1-2n | -1 | 11 | 1 | -11 |
2b+1+2n | 11 | -1 | -11 | 1 |
b | 2 (nhận) | 2 (nhận) | -3 (nhận) | -3 (nhận) |
n | 3 (nhận) | -3 (nhận) | -3 (nhận) | 3 (nhận) |
Vậy \(\orbr{\begin{cases}b=2\\b=-3\end{cases}}\)
Như vậy ta tìm được hai bộ số (a;b) là (1;2) và (1;-3)
Khi \(a=-1\)thì \(b^2+ab+3=b^2-b+3=n^2\)\(\Leftrightarrow4b^2-4b+12=4n^2\Leftrightarrow4b^2-4b+1-4n^2=-11\Leftrightarrow\left(2b-1\right)^2-\left(2n\right)^2=-11\)
\(\Leftrightarrow\left(2b-1-2n\right)\left(2b-1+2n\right)=-11\)
Ta lại lập một bảng giá trị tiếp theo:
2b-1-2n | -1 | 11 | 1 | -11 |
2b-1+2n | 11 | -1 | -11 | 1 |
b | 3 (nhận) | 3 (nhận) | -2 (nhận) | -2 (nhận) |
n | 3 (nhận) | -3 (nhận) | -3 (nhận) | 3 (nhận) |
Vậy \(\orbr{\begin{cases}b=3\\b=-2\end{cases}}\)
Vậy ta tìm được hai bộ số (a;b) là (-1;-2) và (-1;3)
Như vậy các bộ số (a;b) thỏa mãn \(\sqrt{a^2-1}+\sqrt{b^2+ab+3}\)là số nguyên là: (1;2); (1;-3); (-1;-2) và (-1;3)