K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2021

a) Xét tam giác BEA và tam giác DCA có:

+ AE = AC (gt).

+ AB = AD (gt).

\(\widehat{BAE}=\widehat{DAC}\) (2 góc đối đỉnh).

\(\Rightarrow\) Tam giác BEA = Tam giác DCA (c - g - c).

b) Tam giác BEA = Tam giác DCA (cmt).

\(\Rightarrow\) \(\widehat{ABE}=\widehat{ADC}\) (2 góc tương ứng).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) BE // CD (dhnb).

c) Xét tam giác BEC có:

+ A là trung điểm của EC (AE = AC).

+ M là trung điểm của BE (gt).

\(\Rightarrow\) AM là đường trung bình của tam giác BEC.

\(\Rightarrow\) AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(1\right)\)

Xét tam giác CDB có:

+ A là trung điểm của BD (AD = AB).

+ N là trung điểm của CD (gt).

\(\Rightarrow\) AN là đường trung bình của tam giác CDB.

\(\Rightarrow\) AN = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) \(\Rightarrow\) AM = AN (cùng = \(\dfrac{1}{2}\) BC).

 

23 tháng 12 2021

b: Xét tứ giác BEDC có

A là trung điểm của BD

A là trung điểm của EC

Do đó: BEDC là hình bình hành

Suy ra: BE//CD

10 tháng 12 2021

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có 

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: AM=ED/2

AN=BC/2

mà ED=BC

nên AM=AN

12 tháng 10 2021

a: Xét ΔABC và ΔAED có 

AB=AE

\(\widehat{BAC}=\widehat{EAD}\)

AC=AD

Do đó: ΔABC=ΔAED

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
DO đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC
\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK và AH=AK

Xét ΔADE có 

AH/AD=AK/AE

nên HK//DE
hay HK//BC

c: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE
\(\widehat{HBD}=\widehat{KCE}\)

Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

=>\(\widehat{OCB}=\widehat{OBC}\)

=>ΔOBC cân tại O

=>OB=OC

mà HB=CK

nên OB+HB=OC+CK

=>OH=OK

hay ΔOHK cân tại O

18 tháng 12 2020

a)

Sửa đề: ΔABM=ΔADN

Xét ΔAED và ΔACB có 

AE=AC(gt)

\(\widehat{EAD}=\widehat{CAB}\)(hai góc đối đỉnh)

AD=AB(gt)

Do đó: ΔAED=ΔACB(c-g-c)

\(\widehat{ADE}=\widehat{ABC}\)(hai góc tương ứng)

hay \(\widehat{ADN}=\widehat{ABM}\)

Xét ΔADN và ΔABM có

DN=BM(gt)

\(\widehat{ADN}=\widehat{ABM}\)(cmt)

AD=AB(gt)

Do đó: ΔADN=ΔABM(c-g-c)

b) Ta có: ΔADN=ΔABM(cmt)

nên \(\widehat{DAN}=\widehat{BAM}\)(hai góc tương ứng)

mà \(\widehat{BAM}+\widehat{DAM}=180^0\)(hai góc kề bù)

nên \(\widehat{DAN}+\widehat{DAM}=180^0\)

\(\Leftrightarrow\widehat{NAM}=180^0\)

hay M,A,N thẳng hàng(đpcm)

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

=>ΔABC=ΔADE

b: ΔACE vuông cân tại A

=>góc ACE=45 độ

c: DE=BC=căn 12^2+16^2=20cm

18 tháng 1 2022

a) Xét △ ABC và △ AED ta có:

     AB = AE ( gt )

     \(\widehat{A_1}=\widehat{A_2}\) ( đối đỉnh )

     AC = AD ( gt )

⇒ △ ABC = △ AED  ( c - g - c )

b ) Vi △ ABC = △ AED  ( cmt )

⇒   \(\widehat{D}=\widehat{C}\)

Mà 2 góc ở vị trí so le trong nên 

⇒ DE // BC

c) Vì △ ABC = △ AED ( cmt )

⇒ BC = ED = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\) ED

⇒ DN = MC

Xét △ DNA và △ CMA có:

     AD = AC ( gt )

     \(\widehat{D}=\widehat{C}\)

     DN = MC ( cm )

⇒ △ DNA = △ CMA ( c - g - c )

⇒ \(\widehat{DAN}=\widehat{CAM}\)

Do đó: N, A, M thẳng hàng

  

18 tháng 1 2022

em camon nhìu ạ