cho a thuộc {-5;7;9} ; b thuộc {0;16;17;18;19} Tịm giá trị nhỏ nhất và giá trị lớn nhất của\(\frac{a}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(2n + 1 ; 3n + 2)=d
Nếu ta c/m d = 1 thì \(\frac{2n+1}{3n+2}\) là p/s tối giản
ta có 2n + 1 chia hết cho d => 3(2n + 1) chia hết cho d <=> 6n + 3 chia hết cho d
3n + 2 chia hết cho d => 2(3n + 2) chia hết cho d <=> 6n + 4 chia hết cho d
Vậy (6n + 4) - (6n + 3) chia hết cho d => 1 chia hết cho d (dpcm)
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để \(1+\frac{7}{n-5}\) là số nguyên <=> \(\frac{7}{n-5}\) là số nguyên
=> n - 5 \(\in\) Ư(7) = { - 7; - 1 ; 1 ; 7 }
=> n - 5 = { - 7; - 1 ; 1 ; 7 }
=> n = { - 2; 4; 6; 12 }
Để A thuộc Z => n+2 chia hết cho n-5
=> n-5+7 chia hết cho n-5
Vì n-5 chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(7)
n-5 | n |
1 | 6 |
-1 | 4 |
7 | 12 |
-7 | -2 |
KL: n\(\in\){6; 4; 12; -2}
A=n+2/n-5=n-5+7/n-5=n-5/n-5+7/n-5=1+7/n-5
do7chia hết cho n-5=>n-5 thuộc Ư(7)
=>n-5={-7;-1;1;7}=>n={-2;4;6;12}
Để A € Z
Thì n+2 chia hết cho n—5 ( n€ Z; n khác 0}
==> n—5+7 chia hết cho n—5
Vì n—5 chia hết cho n—5
Nên 7 chia hết cho n—5
==> n—5€Ư(7)
==> n—5 €{1;—1;7;—7}
Ta có:
TH1: n—5=1
n=1+5
n=6
TH2: n—5=—1
n=—1+5
n=4
TH3: n—5=7
n=7+5
n=12
TH4: n—5=—7
n=—7+5
n=—2
==> n€{6;4;12;—2}
Đề sai phải ko bạn
Để A \(\in\) Z thì n+2 \(⋮\) n-5
=>(n-5)+7 \(⋮\) n-5
=>n-5 \(⋮\) n-5 => 7 \(⋮\) n-5
=>n-5 \(\in\) Ư(7)
hay n-5 \(\in\){1;-1;7;-7}
=>n\(\in\){6;4;12;-2}
Giá trị nhỏ nhất của \(\frac{a}{b}=\frac{-5}{19}\)
Gía trị lớn nhất của \(\frac{a}{b}=\frac{9}{16}\)
cho a thuộc {-5;7;9} ; b thuộc {0;16;17;18;19} giá trị nhỏ nhất và giá trị lớn nhất của a/b là 1/2