K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

Mình chịu mình mới lớp 5

1: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

=>\(\left(SAC\right)\cap\left(SBD\right)=SO\)

AB//CD

S thuộc (SAB) giao (SCD)

=>(SAB) giao (SCD)=xy, xy qua S, xy//AB//DC

2: 

Xét ΔSBC có SM/SB=SN/SC

nên MN//BC

=>MN//AD

=>AMND là hình thang

Xét ΔSBD có BM/BS=BO/BD

nên MO//SD

=>MO//(SAD)

 

15 tháng 12 2021

 

undefined

 

15 tháng 12 2021

Cảm ơn bạn nhiều !!!

a: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

b: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

c: Chọn mp(SCD) có chứa CD

\(N\in SC\subset\left(SCD\right)\)

\(P\in SD\subset\left(SCD\right)\)

Do đó: \(NP\subset\left(SCD\right)\)

mà \(NP\subset\left(MNP\right)\)

nên (SCD) giao (MNP)=NP

Gọi E là giao điểm của CD với NP

=>E là giao điểm của CD với (MNP)

Chọn mp(SBD) có chứa MP

\(BD\subset\left(SBD\right)\)

\(BD\subset\left(ABCD\right)\)

Do đó: \(BD\subset\left(SBD\right)\cap\left(ABCD\right)\)

Gọi F là giao điểm của MP với BD

=>F là giao điểm của MP với (ABCD)

NV
10 tháng 12 2021

a.

Do O là tâm hbh \(\Rightarrow\) O là trung điểm AC

\(\Rightarrow OJ\) là đường trung bình tam giác SAC

\(\Rightarrow OJ||SA\)

Mà \(SA\in\left(SAC\right)\Rightarrow OJ||\left(SAC\right)\)

\(SA\in\left(SAB\right)\Rightarrow OJ||\left(SAB\right)\)

b. O là trung điểm BD, I là trung điểm BC

\(\Rightarrow OI\) là đườngt rung bình tam giác BCD

\(\Rightarrow OI||CD\)

Mà \(CD\in\left(SCD\right)\Rightarrow OI||\left(SCD\right)\)

Tương tự ta có IJ là đường trung bình tam giác SBC \(\Rightarrow IJ||SB\Rightarrow IJ||\left(SBD\right)\)

c. Ta có I là trung điểm BC, O là trung điểm AC

\(\Rightarrow M\) là trọng tâm tam giác ABC

\(\Rightarrow BM=\dfrac{2}{3}BO=\dfrac{2}{3}.\dfrac{1}{2}BD=\dfrac{1}{3}BD\) 

\(\Rightarrow\dfrac{BM}{BD}=\dfrac{1}{3}\)

Theo giả thiết \(SK=\dfrac{1}{2}KD=\dfrac{1}{2}\left(SD-SK\right)\Rightarrow SK=\dfrac{1}{3}SD\)

\(\Rightarrow\dfrac{SK}{SD}=\dfrac{1}{3}=\dfrac{BM}{BD}\Rightarrow KM||SB\) (Talet đảo)

\(\Rightarrow MK||\left(SBC\right)\)

NV
10 tháng 12 2021

undefined

23 tháng 10 2023

a: \(O=AC\cap BD\)

=>\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)

=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Xét (SAB) và (SCD) có

AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy\); xy đi qua S và xy//AB//CD
b: Chọn mp(SBD) có chứa BM

(SBD) giao (SAC)=SO

Gọi I là giao điểm của SO với BM

=>I là giao điểm của BM với (SAC)

 

a: \(M\in\left(BMN\right);M\in SA\subset\left(SAC\right)\)

=>\(M\in\left(BMN\right)\cap\left(SAC\right)\)

\(C\in BN\subset\left(BMN\right);C\in\left(SAC\right)\)

=>\(C\in\left(BMN\right)\cap\left(SAC\right)\)

Do đó: \(CM=\left(BMN\right)\cap\left(SAC\right)\)

b: Xét (BMN) và (SAD) có

BN//AD

\(M\in\left(BMN\right)\cap\left(SAD\right)\)

Do đó: \(\left(BMN\right)\cap\left(SAD\right)=xy\); xy đi qua M và xy//BN//AD
d: Xét (MCD) và (SAB) có

CD//AB

\(M\in\left(MCD\right)\cap\left(SAB\right)\)

Do đó: (MCD) giao (SAB)=ab, ab đi qua M và ab//CD//AB