so sánh A và B biết A=15^6+1/15^7+1 va B=15^15+1/15^16+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tc \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{a+m}< 1\left(m\in N\right)\)
Ta có: \(B=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}\)\(=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow B< A\)
\(A=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+15}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+1+14}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+1}{15^{16}+1}+\frac{14}{15^{16}+1}\)
\(\Rightarrow15A=1+\frac{14}{15^{16}+1}\)
\(B=\frac{15^{16}+1}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+15}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+1+14}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+1}{15^{17}+1}+\frac{14}{15^{17}+1}\)
\(\Rightarrow15B=1+\frac{14}{15^{17}+1}\)
Vì \(\frac{14}{15^{17}+1}< \frac{14}{15^{16}+1}\) nên \(15B< 15A\)
Vậy B < A
Ta có công thức \(\frac{a}{b}<1\)thì\(\frac{a}{b}<\frac{a+n}{b+n}\)
\(B=\frac{15^{16}+1}{15^{17}+1}<\frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=A\left(1\right)\)
từ (1) \(\Leftrightarrow A>B\)
Ta có công thức :
\(\frac{a}{b}< 1\) \(\Rightarrow\) \(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Rightarrow\)\(B=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=A\)
Vậy \(A>B\)
\(\frac{15^{16}+1}{15^{17}+1}<\frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}<\frac{15^{15}+1}{15^{16}+1}\)
=> A < B
a, Vì A, B < 1
\(A=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
b, \(B=\frac{2018^{2018}+1}{2018^{2019}+1}< 1< \frac{2018^{2019}+1}{2018^{2018}+1}=A\)
a) \(4\frac{7}{10}< 6\frac{7}{10}\)(4 < 6)
b) \(3\frac{4}{15}< 3\frac{11}{15}\)(4/15 < 11/15)
c) \(5\frac{1}{9}>2\frac{2}{5}\)(5 > 2)
d) \(2\frac{2}{3}=2\frac{10}{15}\)(10/15 = 2/3)
\(A=\dfrac{14^{14}+1}{14^{15}+1}\)
\(\Rightarrow14.A=\dfrac{14^{15}+14}{14^{15}+1}\)
\(\Rightarrow14.A=\dfrac{14^{15}+1}{14^{15}+1}+\dfrac{13}{14^{15}+1}\)
\(\Rightarrow14.A=1+\dfrac{13}{14^{15}+1}\)
\(B=\dfrac{14^{15}+1}{14^{16}+1}\)
\(\Rightarrow14.B=\dfrac{14^{16}+14}{14^{16}+1}\)
\(\Rightarrow14.B=\dfrac{14^{16}+1}{14^{16}+1}+\dfrac{13}{14^{16}+1}\)
\(\Rightarrow14.B=1+\dfrac{13}{14^{16}+1}\)
Nhận xét: \(\dfrac{13}{14^{15}+1}>\dfrac{13}{14^{16}+1}\) (cùng tử, xét mẫu)
\(\Rightarrow A>B\)
Vậy \(A>B\)