K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

áp dụng tc \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{a+m}< 1\left(m\in N\right)\)

Ta có: \(B=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}\)\(=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)

\(\Rightarrow B< A\)

3 tháng 5 2019

\(A=\frac{15^{15}+1}{15^{16}+1}\)

\(\Rightarrow15A=\frac{15^{16}+15}{15^{16}+1}\)

\(\Rightarrow15A=\frac{15^{16}+1+14}{15^{16}+1}\)

\(\Rightarrow15A=\frac{15^{16}+1}{15^{16}+1}+\frac{14}{15^{16}+1}\)

\(\Rightarrow15A=1+\frac{14}{15^{16}+1}\)

\(B=\frac{15^{16}+1}{15^{17}+1}\)

\(\Rightarrow15B=\frac{15^{17}+15}{15^{17}+1}\)

\(\Rightarrow15B=\frac{15^{17}+1+14}{15^{17}+1}\)

\(\Rightarrow15B=\frac{15^{17}+1}{15^{17}+1}+\frac{14}{15^{17}+1}\)

\(\Rightarrow15B=1+\frac{14}{15^{17}+1}\)

Vì \(\frac{14}{15^{17}+1}< \frac{14}{15^{16}+1}\) nên \(15B< 15A\)

Vậy B < A

7 tháng 4 2015

Ta có công thức \(\frac{a}{b}<1\)thì\(\frac{a}{b}<\frac{a+n}{b+n}\)

 \(B=\frac{15^{16}+1}{15^{17}+1}<\frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=A\left(1\right)\)

                        từ (1) \(\Leftrightarrow A>B\) 

16 tháng 2 2017

Mn ko biết

28 tháng 2 2018

Ta có công thức : 

\(\frac{a}{b}< 1\) \(\Rightarrow\) \(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Rightarrow\)\(B=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=A\)

Vậy \(A>B\)

7 tháng 5 2020

tại sao a/b<1 thì a/b<a+c/b+C

2 tháng 3 2016

\(\frac{15^{16}+1}{15^{17}+1}<\frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)

\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}<\frac{15^{15}+1}{15^{16}+1}\)

=> A < B

6 tháng 8 2018

4 7/10 < 6 7/10

3 4/15 <3 11/15

5 1/9 > 2 2/5

2 2/5 > 2 10/15

13 tháng 8 2019

a, Vì  A, B < 1

\(A=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)

b, \(B=\frac{2018^{2018}+1}{2018^{2019}+1}< 1< \frac{2018^{2019}+1}{2018^{2018}+1}=A\)

6 tháng 8 2018

a) \(4\frac{7}{10}< 6\frac{7}{10}\)(4 < 6)

b) \(3\frac{4}{15}< 3\frac{11}{15}\)(4/15 < 11/15)

c) \(5\frac{1}{9}>2\frac{2}{5}\)(5 > 2)

d) \(2\frac{2}{3}=2\frac{10}{15}\)(10/15 = 2/3)

18 tháng 10 2023

\(A=\dfrac{14^{14}+1}{14^{15}+1}\)

\(\Rightarrow14.A=\dfrac{14^{15}+14}{14^{15}+1}\)

\(\Rightarrow14.A=\dfrac{14^{15}+1}{14^{15}+1}+\dfrac{13}{14^{15}+1}\)

\(\Rightarrow14.A=1+\dfrac{13}{14^{15}+1}\)

 

\(B=\dfrac{14^{15}+1}{14^{16}+1}\)

\(\Rightarrow14.B=\dfrac{14^{16}+14}{14^{16}+1}\)

\(\Rightarrow14.B=\dfrac{14^{16}+1}{14^{16}+1}+\dfrac{13}{14^{16}+1}\)

\(\Rightarrow14.B=1+\dfrac{13}{14^{16}+1}\)

Nhận xét: \(\dfrac{13}{14^{15}+1}>\dfrac{13}{14^{16}+1}\) (cùng tử, xét mẫu)

\(\Rightarrow A>B\)

Vậy \(A>B\)