So sánh:
44,1 ...... 44 1/10
88 5/10 ........ 88,49
Mọi người giúp mình nha! MInh đang cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh 5^23 và 3^35
5^23 < 3^35
nha bạn
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
Ta có :
2013/2012 = 1 + 1/2012
999/998 = 1 + 1/998
Mà 1/2012 < 1/998
Nên 1 + 1/2012 < 1 + 1/998
Vậy 2013/2012 < 999/998
Cho S= 1/3 +2/3^2+3/3^3+..+100/3^100 So sánh 5^2019 và 5^2020
Hiện tại mình đang cần gấp giúp mk nha!
\(5^{2019}< 5^{2020}\)
vì
2020>2019
=>\(5^{2019}< 5^{2020}\)
Ta có :
\(8^9< 9^9\)
\(7^9< 9^9\)
\(6^9< 9^9\)
\(..........\)
\(1^9< 9^9\)
Cộng vế với vế ta được :
\(1^9+2^9+3^9+...+8^9< 9^9+9^9+9^9+...+9^9\) ( có 8 số \(9^9\) )
\(\Rightarrow1^9+2^9+3^9+...+8^9< 8.9^9< 9.9^9=9^{10}\)
\(\Rightarrow1^9+2^9+3^9+...+8^9< 9^{10}\)
44,1=441/10
885/10>88,49
:))
Đ/S: a) =
b) >
_HT_