K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 10 2024

Lời giải:

$4\equiv 1\pmod 3$

$\Rightarrow 4^{99}\equiv 1^{99}\equiv 1\pmod 3$

Lại có:

$4^3\equiv 1\pmod 7$

$\Rightarrow 4^{99}=(4^3)^{33}\equiv 1^{33}\equiv 1\pmod 7$

Vậy $4^{99}$ chia 3 và 7 đều dư 1

$\Rightarrow 4^{99}-1\vdots 3; 7$

$\Rightarrow 4^{99}-1=BC(3,7)\vdots BCNN(3,7)$ hay $4^{99}-1\vdots 21$
$\Rightarrow 4^{99}$ chia 21 dư 1.

10 tháng 10 2017

Ta có:

499= (43)33 =6433

Ma 64:21 dư 1

=> 6433 :21 dư 1

Hay 499 :21 dư 1

     Vậy 499:21 dư 1

20 tháng 10 2017

ta có:

4^99=(4^3)^33=1

suy ra số dư =1