Cho tam giác ABC, gọi I là một điểm trên tia phân giác của góc ABC và điểm I nằm bên trong tam giác. Qua I kẻ đường thẳng song song với BC cắt AB và AC lần lượt tại D và E biết DE= BD+CE. Chứng minh rằng CI là phân giác của góc ACB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : góc DBI = góc IBC ( vì BI là tia phân giác của góc ABC )
góc DIB = góc IBC ( so le trong do DE // BC)
\(\Rightarrow\) góc DBI = góc DIB
\(\Rightarrow\Delta BDI\)cân tại D
\(\Rightarrow BD=DI\left(1\right)\)
Và ta lại có: góc ECI = góc ICB ( vì CI là tia phân giác của góc ACB)
góc EIC = góc ICB ( so le trong do DE// BC)
\(\Rightarrow\Delta CEI\) cân tại E
\(\Rightarrow CE=EI\left(2\right)\)
\(Mà:DI+EI=DE\left(I\in DE\right)\)
\(Hay:BD+CE=DE\left(từ1\&2\right)\)
\(\Rightarrowđpcm\)
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
b)CIE = ICB (2 góc so le trong, DE // BC)
mà ICB = ICE (IC là tia phân giác của ECB)
=> CIE = ICE
=> Tam giác EIC cân tại I
=> EI = EC
BID = IBC (2 góc so le trong, DE // BC)
mà IBC = IBD (IB là tia phân giác của DBC)
=> BID = IBD
=> Tam giác DIB cân tại D
=> DI = DB
DE = DI + IE = DB + CE
Ta có: DI // BC (giả thiết)
Suy ra:∠I1 =∠B1(so le trong) (1)
Lại có:∠B1 =∠B2 (2)
(vì BI là tia phân giác góc ABC)
Từ (1) và (2) suy ra:∠I1 =∠B2
=>∆BDI cân tại D =>BD=DI (3)
Mà IE // BC (gt) => ∠I2 =∠C1 (so le trong) (4)
Đồng thời: ∠C1=∠C2 (vì CI là phân giác của góc ACB) (5)
Từ (4) và (5) suy ra: ∠I2=∠C2. Suy ra ∠CEI cân tại E
Suy ra: CE = EI (6)
Từ (3) và (6) suy ra: BD + CE = DI + EI = DE