c) từ E kẻ EH vuông góc vs BC (H thuộc BC). Biết HBE=50 độ;MEB=25 độ. tính HEM và BME
Giải hộ em nha các Pro
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) xét tam giác ICM và BMK có IC=BK ; MB=MC ; gocKBM=ICM(theo câu a ) suy ra ICM=BMK(c.g.c) suy ra BMK=CMI(đổi định) suy ra I ; M ;K THẲNG HÀNG
a) xet tam giac AMC va EBM co BM=CM : AM=ME M1=M2 suy ra EMB=EBM suy ra AC=EB ta co goc MAC=goc MEB suy ra AC//BE (so le trong)
a) xét
\(\Delta BME\text{VÀ}\Delta CMA\\ BM=CM\left(gt\right)\\ \widehat{BME}=\widehat{CMA}\\ MA=ME\left(gt\right)\\ \Delta BME=\Delta CMA\left(c-g-c\right)\Rightarrow BE=AC\\ \widehat{EMB}=\widehat{ACM}\left(\text{MÀ Ở VỊ TRÍ SO LE TRONG}\right)\\ \Rightarrow AC\text{//}BE\)
:V lười gõ tiếp quá ;-;
mà bạn cho mình hỏi. =) mình thấy bạn đăng toàn câu hỏi nâng cao bạn đang thi HSG hả ;-; mình 24/1 thi rồi =) không biết bạn có thi không =)))
a, xét tam giác MAC và tâm giác MEB
có{ME=MA(gt);BM=MC;tam giác MAC= tam giác MEB(c-g-c)
=> AC = EB=>EMB^=ACM^( mà ở vị trí so le trong)
=> AC// BE
b, Xét tam giác AIM và tam giác KME
có { AI=KE(gt);M3^=M4^; AM=ME(gt)
=> tam giác AIM= tam giác KME(c-g-c)
=> IM=MK
=> I,M,K thẳng hàng
c, ta có : tam giác HEB
có { H^ =90°;B^ =50°;MEB^=25°
=> H^ + B^ + MEB^ +HEM^ =180°
=> 90°+50°+25°+HEM^ =180°
=> HEM^ =180°-90°-50°-25°
=> HEM^=15°
lại có tam giác BME
{B^=50°;E^=25°
=> B^+E^+BME^= 180°
=> BME^ = 180° -25°-50°
=> BME^ =105°
b: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
\(a,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMC}=\widehat{BME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta EMB\left(c.g.c\right)\\ b,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMB}=\widehat{CME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\\ \Rightarrow\widehat{MAB}=\widehat{MEC}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}EC\\ c,\left\{{}\begin{matrix}\widehat{MAI}=\widehat{MEK}\\AM=ME\\KE=AI\end{matrix}\right.\Rightarrow\Delta AMI=\Delta EMK\left(c.g.c\right)\\ \Rightarrow\widehat{AMI}=\widehat{EMK}\\ \text{Mà 2 góc này ở vị trí đối đỉnh và }A,M,E\text{ thẳng hàng nên }I,M,K\text{ thẳng hàng}\)
đợi mãi mà ko có ai tra lời nhỉ , các pro đâu hết rồi !!!!!!!!!!!!!!!!!!!!!!!!!!!!