K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

\(\frac{6n-14}{2n-5}=\frac{3\left(2n-5\right)+1}{2n-5}=3+\frac{1}{2n-5}\)

---> \(1⋮\left(2n-5\right)\)

bạn làm nốt nhé

14 tháng 8 2021

Để B đạt GTLN thì \(\dfrac{8}{2n-1}\)đạt GTLN

⇒2n-1 là số nguyên dương nhỏ nhất

⇒2n-1=1

⇒2n=2

⇒n=1

2 tháng 1 2016

Gọi d là ƯCLN của 2n + 1 và 2 n + 3

 Ta có : 2n + 1 chia hết cho d

            2n  + 3  chia hết cho d 

=> ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d

          2 chia hết cho d  => d là Ư của 2

Mà Ư(2) = { 1 ; 2 }

Mà d lẻ =>  d = 1

Vậy 2 n + 1 và 2n + 3 nguyên tố cùng nhau

2 tháng 1 2016

a) gọi d là UC(2n+1;6n+5)

2n+1 chia hết cho d nên 3(2n+1)=6n+3 cũng chia hết cho d

(6n+5)-(6n+3) chia hết cho d

vậy 2 chia hết cho d mà d thuộc U(2)={1;2}  

2n+1 và 6n+5 đều là số lẻ nên d =1

vậy 2 số trên là 2 số nguyên tố cúng nhau

b) tương tự như câu a

tích mình nhé Hoa!!!!!!!!!!!!

24 tháng 6 2019

Câu hỏi của Nguyễn Thị Hồng Linh - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo link này nhé!

24 tháng 6 2019

Với n là số tự nhiên

Ta có: \(5^{2n^2-6n+2}-12=25^{n^2-3n+1}-12=25^{n^2-3n}.25-12\)

Với \(n^2-3n=n\left(n-3\right)⋮2\)( vì n, n-3 1 trong 2 số sẽ có sỗ chẵn, hoặc chia trường hợp n chẵn và n lẻ để chứng minh nó chia hết cho 2)

Đặt: \(n^2-3n=2k\) 

=> \(5^{2n^2-6n+2}-12=25^{2k}.25-12\equiv\left(-1\right)^{2k}.25-12\equiv25-12\equiv0\left(mod13\right)\)

Mà \(5^{2n^2-6n+2}-12\)là số nguyên tố

=> \(5^{2n^2-6n+2}-12=13\Leftrightarrow5^{2n^2-6n+2}=25=5^2\Leftrightarrow2n^2-6n+2=2\)

\(\Leftrightarrow\orbr{\begin{cases}n=0\\n=3\end{cases}}\) thử lại thỏa mãn

Vậy n=0 hoặc n=3

26 tháng 12 2017

 Gọi d là Ước chung lớn nhất của 2n + 1 và 6n + 5

=> ( 6n + 5 ) - ( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - 3( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - ( 6n + 3 ) chia hết cho d

=> 2 chia hết cho d

Vậy ước chung lớn nhất của 2n + 1 và 6n + 5 là 2 .

27 tháng 12 2017

Gọi a là ƯCLN(2n+1, 6n+5)

ta có: 2n+1 chia hết cho a và 6n+5 chia hết cho a

        3.(2n+1) chia hết cho a và (6n + 5) chia hết cho a

         6n+3 chia hết cho a và 6n+5 chia hết cho a

       [(6n+5) - (6n+3)] chia hết cho a

       [6n+5 - 6n -3] chia hết cho a

        2 chia hết cho a suy ra a  = 2 hoặc  1

Vậy 6n+5 và 2n+1 là hai số nguyên tố chung

7 tháng 3 2020

Gọi d là ƯCLN (2n+1;6n+5)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\6n+5⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}}}\)

=> (6n+5)-(6n+3) chia hết cho d

=> 2 chia hết cho d 

=> d={1;2}

Vì 2n+1 là số lẻ => 2n+1 không chia hết cho 2

=> d=1

Gọi ƯCLN(2n+1;6n+5) là d

Có \(2n+1⋮d\)

\(6n+5⋮d\)

=> \(3\left(2n+1\right)⋮d\)

\(6n+5⋮d\)

=>\(6n+3⋮d\)

\(6n+5⋮d\)

=>\(\left(6n+5\right)-\left(6n+3\right)\)\(⋮\)d

=>2 chia hết cho d

=> d thuộc Ư(2)={1;2}

Vì 2n+1 lẻ nên d khác 2

=> d bằng 1

Vậy....