K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2022
9 tháng 1 2022

31 tháng 12 2021

undefined

1 tháng 1 2022

Xét ΔOBCΔOBC và ΔOADΔOAD có:

OB=OAOB=OA (gt)

ˆOO^ chung

OC=OAOC=OA (gt)

⇒ΔOBC=ΔOAD⇒ΔOBC=ΔOAD (c.g.c)

⇒BC=AD⇒BC=AD (hai cạnh tương ứng)

 

b) Xét ΔEBDΔEBD có:

ˆE1+ˆB1+ˆD1=180o⇒ˆB1=180o−ˆE1−ˆD1E1^+B1^+D1^=180o⇒B1^=180o−E1^−D1^ (1)

Xét ΔEACΔEAC có:

ˆE2+ˆA1+ˆC1=180o⇒ˆA1=180o−ˆE2−ˆC1E2^+A1^+C1^=180o⇒A1^=180o−E2^−C1^ (2)

mà ˆE1=ˆE2E1^=E2^ (đối đỉnh) (3)

ˆD1=ˆC1D1^=C1^ (do ΔOBC=ΔOADΔOBC=ΔOAD hai góc tương ứng) ($)

Từ 4 điều trên suy ra ˆB1=ˆA1B1^=A1^

Ta có: BD=OD−OB=OC−OA=ACBD=OD−OB=OC−OA=AC

Xét ΔEACΔEAC và ΔEBDΔEBD có:

ˆD1=ˆC1D1^=C1^

BD=ACBD=AC (cmt)

ˆB1=ˆA1B1^=A1^

⇒ΔEAC=ΔEBD⇒ΔEAC=ΔEBD (g.c.g)

 

c) ΔEAC=ΔEBD⇒EC=EDΔEAC=ΔEBD⇒EC=ED (hai cạnh tương ứng)

⇒⇒

Xét ΔOEDΔOED và ΔOECΔOEC có:

OD=OCOD=OC (gt)

ˆD1=ˆC1D1^=C1^

DE=CE (cmt)

⇒ΔOED=ΔOEC⇒ΔOED=ΔOEC (c.g.c)

⇒ˆDOE=ˆCOE⇒DOE^=COE^ (hai góc tương ứng)

⇒OE⇒OE là tiếp tuyến của ˆOO^

image 
1 tháng 1 2022

oki nha

a: Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{AOD}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Xét ΔBDC và ΔACD có

BD=AC

\(\widehat{BDC}=\widehat{ACD}\)

DC chung

Do đó: ΔBDC=ΔACD

Suy ra: \(\widehat{EAC}=\widehat{EBD}\)

Xét ΔEAC và ΔEBD có 

\(\widehat{EAC}=\widehat{EBD}\)

AC=BD

\(\widehat{ECA}=\widehat{EDB}\)

Do đó: ΔEAC=ΔEBD

c: Xét ΔOEC và ΔOED có

OE chung

EC=ED

OC=OD

Do đó: ΔOEC=ΔOED

Suy ra: \(\widehat{COE}=\widehat{DOE}\)

hay OE là tia phân giác của góc xOy

a.OC=OA+AC

OD=OB+BD
mà OA=OB(gt);AC=BD(gt)

=>OC=OD

Xét tam giác OAD và tam giác OBC có:OA=OB(gt)

                                                                góc O chung

                                                                OD=OC(cmt)

                                                      =>tam giác OAD=tam giác OBC(c.g.c)=>AD=BC(hai cạnh tương ứng)(đpcm)

b.tam giác OAD=tam giác OBC(câu a)=>góc OAD=góc OBC(hai góc tương ứng)

                                                                 góc ODA=góc OCB(hai góc tương ứng) hay góc BDE=góc ACE

góc OAD+góc DAC=180 độ (hai góc kề bù)

góc OBC+góc CBD=180 độ (hai góc kề bù)

=>góc DAC=góc CBD hay góc EAC=góc EBD

Xét tam giác EAC và tam giác EBD có:

Góc ACE=góc BDE(cmt)

AC=BD(gt)

góc EAC=góc EBD(cmt)

=>tam giác EAC=tam giác EBD(g.c.g)(đpcm)

c.tam giác EAC=tam giác EBD(câu b)=>EC=ED(hai cạnh tương ứng)

Xét tam giác OEC và tam giác OED có:

OC=OD(câu a)

EC=ED(cmt)

OE chung

=>tam giác OEC=tam giác OED(c.c.c)

=>góc EOC=góc EOD(hai góc tương ứng)=>OE là phân giác góc COD hay OE là phân giác góc xOy (đpcm)

13 tháng 12 2023

x O y A C B D E

Ta có

OB=OA (gt); BD=AC (gt)

=> OB+BD=OA+AC => OD=OC

Xét tg AOD và tg BOC có

OD=OC (cmt); OA=OB (gt); \(\widehat{xOy}\) chung => tg AOD = tg BOC (c.g.c)

b/

Ta có tg AOD = tg BOC (cmt) 

\(\Rightarrow\widehat{OAD}=\widehat{OBC}\)

\(\widehat{OAD}+\widehat{CAE}=\widehat{OAC}=180^o\)

\(\widehat{OBC}+\widehat{DBE}=\widehat{OBD}=180^o\)

\(\Rightarrow\widehat{OAC}=\widehat{OBD}\)

Xét tg EAC và tg EBD có

\(\widehat{OAC}=\widehat{OBD}\) (cmt)

tg AOD = tg BOC (cmt) \(\Rightarrow\widehat{ACE}=\widehat{BDE}\)

AC=BD (gt)

=> tg EAC = tg EBD (g.c.g)

c/

Xét tg OAE và tg OBE có

OA=OB (gt); OE chung

tg EAC = tg EBD (cmt) => AE=BE

=> tg OAE = tg OBE (c.c.c) \(\Rightarrow\widehat{xOE}=\widehat{yOE}\) => OE là phân giác góc \(\widehat{xOy}\)

Xét tg OCD có

OC=OD (cmt) => tg OCD cân tại O

\(\widehat{xOE}=\widehat{yOE}\) (cmt)

\(\Rightarrow OE\perp CD\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

 

 

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Xét ΔACD và ΔBDC có 

AC=BD

\(\widehat{ACD}=\widehat{BDC}\)

CD chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{EAC}=\widehat{EBD}\)

Xét ΔEAC và ΔEBD  có

\(\widehat{EAC}=\widehat{EBD}\)

AC=BD

\(\widehat{ECA}=\widehat{EDB}\)

Do đó: ΔEAC=ΔEBD