Chứng minh rằng A=1/1.2+1/2.3+.....+1/99.100 ko là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
Có: \(\frac{7}{12}=0,58\left(3\right);\frac{99}{100}=0,99;\frac{5}{6}=0,8\left(3\right)\)
Và: \(0,58< 0,99>0,8\left(3\right)\) ( đề sai bạn ơi )
A= \(\frac{1}{2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\)
\(\Rightarrow\) 2A = 1 + \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
\(\Rightarrow\) 2A - A = ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\) ) -
( \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\))
\(\Rightarrow\) A = 1 - \(\frac{1}{2^{100}}\) < 1
Vậy: A < 1
\(\frac{1}{2}\)
B= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
= 2. \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
= 2. ( \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\) )
= 2. \(\left(\frac{1}{1}-\frac{1}{100}\right)\) = \(\frac{99}{50}\)
\(\Rightarrow\) B = \(\frac{99}{50}\) < \(\frac{100}{50}\) = 2
Vậy: B < 2
Ta có:
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
=1-\(\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3}\right)-...-\left(\dfrac{1}{99}+\dfrac{1}{99}\right)-\dfrac{1}{100}\)
=\(1-\dfrac{1}{100}=\dfrac{100}{100}-\dfrac{1}{100}=\dfrac{99}{100}\)
a: B=1-1/2+1/2-1/3+...+1/2020-1/2021
=1-1/2021=2020/2021
b:
1/2^2+1/3^2+...+1/2021^2>0
=>A>1
1/2^2+1/3^2+...+1/2021^2<1-1/2+1/2-1/3+...+1/2020-1/2021=2020/2021
=>A<2020/2021+1
mà A>1
nên 1<A<1+2020/2021
=>A ko là số nguyên
Gọi \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)(TỐI GIẢN CÁC PHÂN SỐ LẬP LẠI )
\(A=\frac{99}{100}
Ta có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
= \(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
= \(\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{100}{99.100}-\frac{99}{99.100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}\)
= \(\frac{99}{100}\)
Vậy\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
= \(\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)< 1
~~~
#Sunrise
A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100
A= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - ...... - 1/100
A = 1/1 - 1/100
A= 100/100 - 1/100
A= 99/100
A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - ....... - 1/100
A= 1/1 - 1/100
A = 100 / 100 - 1/100
A= 99/100