Rút gọn
\(B=\frac{\frac{4000}{1}+\frac{3999}{2}+\frac{3998}{3}+...+\frac{1}{4000}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4001}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{4000}{1}+\frac{3999}{2}+\frac{3998}{3}+........+\frac{1}{4000}\)
A=\(1+\left(1+\frac{3999}{2}\right)+\left(1+\frac{3998}{3}\right)+........+\left(1+\frac{1}{4000}\right)\)
A=\(\frac{4001}{4001}+\frac{4001}{2}+\frac{4001}{3}+...........+\frac{4001}{4000}\)
A=\(4001.\left(\frac{1}{2}+\frac{1}{3}+........+\frac{1}{4000}+\frac{1}{4001}\right)\)
=>\(y=\frac{4001.\left(\frac{1}{2}+\frac{1}{3}+........+\frac{1}{4001}\right)}{\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{4001}}\)
=>\(y=4001\)
\(C=\frac{T}{M}\)
\(M=\left(1+\frac{3998}{2}\right)+\left(1+\frac{3997}{3}\right)+.....+\left(1+\frac{1}{3999}\right)+\frac{4000}{4000}\)
\(=\frac{4000}{2}+\frac{4000}{3}+......+\frac{4000}{3999}+\frac{4000}{4000}=4000.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4000}\right)\)
\(=4000.T\)
\(C=\frac{T}{M}=\frac{T}{4000T}=\frac{1}{4000}\)
A=[(3999/2+1)+(3998/3+1)+...+(1/4000+1)+1]/(1/2+1/3+...+1/4001)
A=(4001/2+4001/3+...+4001/4001)/(1/2+1/3+...+1/4001)
A=[4001(1/2+1/3+...+1/4001)]/(1/2+1/3+...+1/4001)
A=4001
Vậy A=4001
Ta có:(1+1999/2)+(1+1998/3)+...(2/1999)(có 1998 tổng<=>1998 số 1)+(2000 - 1998)+400
= 2001/2+2001/3+...+2001/1999+402
=2001.(1/2+1/3+...+1/1999)+402(1)
Thay (1) vào biểu thức trên và tính(tự tính nha!,tk cho mk!!!)
\(D=\left(\frac{a-b}{a^{\frac{3}{4}}+a^{\frac{1}{2}}.b^{\frac{1}{4}}}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right):\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{a}{b}}\)
\(=\left[\frac{a-b}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right]:\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{b}{a}}\)
\(=\frac{a-b-a+a^{\frac{1}{2}}.b^{\frac{1}{2}}}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}.\frac{1}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}=\frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}}}\frac{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}\sqrt{\frac{a}{b}}.\sqrt{\frac{a}{b}}=1\)
a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)
b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)
c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)
\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)