cho a/c=c/b.CMR a^2+c^2/b^2+c^2=a/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
...
tương tự và cộng lại \(=>M>\frac{a+b+c+d}{a+b+c+d}=1\)(1)
Lại có \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
...
tương tự và cộng lại \(=>M< \frac{a+b+b+c+c+d+d+a}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)(2)
Từ 1 và 2 = > 1<m<2 ( đpcm)
nhìn vậy mà bảo chị à D:
nghĩa là tiếp tục làm giống như vậy rồi cộng theo từng vế á
kẻ phân giác AD, kẻ BK, CH ⊥ AD
Δvuông BAK có sinA=BK/AB
Δvuông CAH có sinA=HC/AC
Mà sinBAK= sinCAH= sin\(\dfrac{A}{2}\)= \(\dfrac{BK}{AB}=\dfrac{HC}{AC}=\dfrac{BK+HC}{AB+AC}\) (1)
Lại có trong Δvuông BKD và Δvuông DCH có BK<BD,HC<DC(cạnh góc vuông< cạnh huyền)=>BK+HC<BD+DC=BC (2)
Từ (1) và (2) ta có:
\(\dfrac{BK+HC}{AB+AC}< \dfrac{BD+DC}{AB+AC}\) hay \(sin\dfrac{A}{2}< \dfrac{a}{b+c}\)
Áp dụng bđt cosi ta có \(b+c\ge2\sqrt{bc}\Leftrightarrow\dfrac{a}{b+c}\le\dfrac{a}{2\sqrt{bc}}\)
Vậy \(sin\dfrac{A}{2}< \dfrac{a}{2\sqrt{bc}}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
a/x=b/y=c/z=a/x=2b/2y=3c/3z=a+2b-3c/x+2y-3z
=>4a/4x=5b/5y=6c/6z=4a-5b+6c/4x-5y+6z
=>a+2b-3c/x+2y-3z=4a-5b+6c/4x-5y+6z=a+2b-3c/4a-5b+6c=x+2y-3z/4x-5y+6z
Vậy ta có điều phải chứng minh
2/ Theo đề bài ta có:
\(^{^{ }a^2}\)=bc=>\(\dfrac{a}{b}\)=\(\dfrac{c}{a}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{a}{b}\)=\(\dfrac{c}{a}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)=\(\dfrac{a+b}{c+a}\)(*)
=>\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)=\(\dfrac{a-b}{c-a}\)(**)
Từ (*) và (**) suy ra :
\(\dfrac{a+b}{c+a}\)=\(\dfrac{a-b}{c-a}\)=\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+a}{c-a}\)
Từ đó ta có điều phải chứng minh
b) Theo đề bài ta có:
\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+a}{c-a}\)=>(a+b).(c-a)=(a-b).(c+a)
=>ac-a^2+bc-ab=ac+a^2-bc-ab
=>ac-ac+ab-ab-a^2-a^2=-bc-bc
=>-a^2-a^2= -bc-bc
=>-2a^2=-2bc
=>a^2=bc
Ta có:a/c=c/b=>c2=ab
thay vào biểu thức ta có:
VT=a2+c2/b2+c2=a2+ab/b2+ab=a(a+b)/b(a+b)=a/b
Vì VT=VP(=a/b)
=>đpcm