Bài 1: Cho tam giác ABC có AB = AC, và H là trung điểm của BC. Kẻ HK vuông góc với AB, HD vuông góc AC \(\left(K\in AB,D\in AC\right)\). Chứng minh rằng:
a) Tam giác AHB = tam giác AHC
b) AH vuông góc với BC
c) AH là tia phân giác của BAC
d) AK = AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của \(\widehat{BAC}\)
c: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
a, Xét tg ABH và tg ACH, có:
AB=AC(tg ABC đều)
góc AHB= góc AHC(=90o)
AH chung
=>tg AHB= tg AHC(ch-cgv)
b, Xét tg ADH và tg AEH, có:
góc DAH= góc HAE(2 góc tương ứng)
AH chung
góc ADH= góc AEH(=90o)
=>tg ADH= tg AEH(ch-gn)
=>AD=AE(2 cạnh tương ứng)
=>tg ADE là tg cân tại A.(1)
Mà ta có:tg ABC là tam giác đều nên góc A= góc B= góc C=60o(2)
Từ (1) và (2), suy ra:
tg ADE là tg đều.
c,Xét tg DBH vuông tại D và tg ECH vuông tại E, có:
BC=CH(2 cạnh tương ứng)(1)
Mà BH>DH(trong tg, cạnh huyền là cạnh lớn nhất)(2)
Từ (1) và (2), suy ra:
DH<CH(đpcm)
a) Ta xét ▵AHB và▵AHC, ta có
AH là cạnh chung
AC=AB ( vì tam giác cân tại A)
góc AHC = góc AHB là góc vuông (90 độ)
-> ▵AHB =▵AHC (cạnh huyền- cạnh góc vuông)
b) Ta có ▵AHB =▵AHC (cmt)
->HB=HC ( 2 cạnh tương ứng)
c) Ta xét ▵AKH và ▵AIH. Ta có:
AH là cạnh chung
góc AKH = góc AIK = 90 độ
-> ▵AKH =▵AIH (cạnh huyền - cạnh góc vuông)
-> AK = AI (2 cạnh tương ứng) nên ▵AIK là tam giác cân và cân tại A
d) Ta áp dụng tính chất: Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.
Ta có AH là cạnh chung cùng vuông góc với IK và BC
-> IK // BC
e) Ta cho giao điểm của AH và IK là O
Ta xét ▵AKO và ▵AIO
Ta có AK=AI (cmt)
Góc AOK = góc AOI = 90 độ
-> ▵AKO = ▵AIO
-> KO = IO ( 2 cạnh tương ứng) -> AH là đường trung trực của đoạn thẳng IK
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AC=5cm
d: Xét ΔKBH vuông tại K và ΔMCH vuông tại M có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔKBH=ΔMCH
Suy ra: KB=MC
a: Xet ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: Xet ΔAMH vuông tại M và ΔANH vuông tại N co
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN và HM=HN
=>ΔHMN cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//CB