K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

Số đường chéo của một đa giác \(n\) cạnh \(\left(n>3\right)\)được tính bởi công thức \(\frac{n\left(n-3\right)}{2}\)

a) Số đường chéo bằng số cạnh có nghĩa là \(\frac{n\left(n-3\right)}{2}=n\Leftrightarrow n^2-3n=2n\Leftrightarrow n^2-5n=0\Leftrightarrow n\left(n-5\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(loại\right)\\n=5\left(nhận\right)\end{cases}}\)

Vậy hình ngũ giác có số đường chéo bằng số cạnh.

Số đường chéo gấp đôi số cạnh có nghĩa là \(\frac{n\left(n-3\right)}{2}=2n\Leftrightarrow n^2-3n=4n\Leftrightarrow n^2-7n=0\Leftrightarrow n\left(n-7\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(loại\right)\\n=7\left(nhận\right)\end{cases}}\)

Vậy hình thất giác có số đường chéo gấp đôi số cạnh.

12 tháng 12 2021

Các bạn ơi giúp mik với

27 tháng 11 2021

Chọn 2 trong n  đỉnh của đa giác ta lập được 1 cạnh hoặc đường chéo.(n>=3,n thuộc N*)

Số cạnh và đường chéo là C2n (đường).

⇒ Số đường chéo của đa giác n cạnh là C2n−n (đường).

Theo đề bài, số đường chéo gấp đôi số cạnh nên ta có phương trình:

C2n−n=2n⇔n!/2!(n−2)!=3n

⇔n(n−1)(n−2)!/2(n−2)!=3n

⇔n(n−1)=6n

⇔n^2−7n=0

⇔[n=7(tm)        n=0(ktm)

Vậy đa giác cần tìm có 7 cạnh.

15 tháng 11 2019

Số đường chéo của đa giác n cạnh là (n( n - 3 ))/2. ( n ∈ N, n ≥ 3 )

Theo giả thiết ta có (n( n - 3 ))/2 = n ⇔ n( n - 3 ) = 2n  ⇔ n 2 - 3 n - 2 n = 0

⇔ n 2 - 5 n = 0 ⇔ n ( n - 5 ) = 0  ⇔ Bài tập: Đa giác. Đa giác đều | Lý thuyết và Bài tập Toán 8 có đáp án

So sánh điều kiện ta có n = 5 thỏa mãn.

Chọn A

27 tháng 12 2017

20 tháng 2 2018

Gọi số cạnh của đa giác là n (n ≥ 3; n Є N)

Số đường chéo của đa giác là

n ( n − 3 ) 2

Theo đề bài ta có

n ( n − 3 ) 2  = n ó n2 – 3n = 2n

ó n2 – 5n = 0ó n (n – 5) = 0

ó n = 0 ( k t m ) n = 5 ( t m )

Vậy đa giác thỏa mãn đề bài là ngũ giác

Đáp án cần chọn là: B

3 tháng 9 2021

Số đường chéo của đa giác đều n cạnh là \(\dfrac{n\left(n-3\right)}{2}\)
Số đường chéo bằng 33 số cạnh

\(\Rightarrow\dfrac{n\left(n-3\right)}{2}=33n\Rightarrow n\left(n-3\right)=66n\\ \Rightarrow n-3=66\\ \Rightarrow n=69\)
Suy ra đa giác đều đó có 69 cạnh
Số đo mỗi góc là \(\dfrac{180\cdot33+360}{69}\approx91,3\)

 

19 tháng 7 2017

Đa giác có số đường chéo bằng số cạnh là :

Ngũ Giác

...

20 tháng 7 2017

Gọi n là số cạnh của đa giác cần tìm 

\(\left(n\in N,\ge3\right)\)

Theo bài ra ta có \(\frac{n\left(n-3\right)}{2}=n\)

\(\Rightarrow n\left(n-5\right)=0\)Vì \(n\ge3\)nên n=5

Vậy đa giác cần tìm là ngũ giác

Cảm ơn bn o0oNguyễno0o nhưng cần giải rõ ràng hơn

7 tháng 7 2018

Đáp án A

Phương pháp

Tìm số cạnh và số đường chéo của đa giác đều n cạnh.

Cách giải

Khi nối hai đỉnh bất kì của đa giác ta được một số đoạn thẳng, trong đó bao gồm cạnh của đa giác và đường chéo của đa giác đó.

Đa giác đều n cạnh có n đỉnh, do đó số đường chéo là C n 2 − n  

Theo giả thiết bài toán ta có 

C n 2 − n = n ⇔ C n 2 = 2 n ⇔ n ! 2 ! n − 2 ! = 2 n ⇔ n n − 1 = 4 n ⇔ n − 1 = 4 ⇔ n = 5