Mỗi góc đa giác đều n cạnh bằng 108 độ . Tìm n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng số đo các góc ngoài của đa giác bằng \(360^o\)
Số đo một góc trong của hai đa giác đều là :
\(468^o-360^o=108^o\)
Gọi n là số cạnh của đa giác đều . Ta có số đo của mỗi đa giác đều bằng \(\frac{\left(n-2\right).180}{n}\)
\(=\frac{\left(n-2\right).180^o}{n}\)\(=108^o=180^o.n-360^o=108^o.n=72n=360^o=n=5\)
Vậy \(n=5\)
Tổng số đo các góc của đa giác n cạnh là: 140.n
Mặt khác đa giác n cạnh thì có tổng số đo các góc của đa giác là: (n-2). 180
Suy ra: 140n = (n – 2). 180
⇔ 140n = 180n - 360
⇔ 40n = 360 ⇔ n = 9
Chọn đáp án A
Bạn tham khảo
Giải thích các bước giải:
Mỗi góc trong của đa giác đều có số đo
Ta có
Vậy đa giac đều có 12 góc
Hãy tick cko mình nhé !!
Bạn áp dụng công thức sau
Số độ mỗi góc = ( 1-2/n)* 180
Với n là số cạnh--> n= 10
tk mk nhoaaa mn
Ta có: ( n − 2 ) .180 0 n = 120 0 . Tìm được n = 6 Þ số đường chéo là 9 đường chéo