Tìm các số có 3 chữ số abc sao cho hai lần số đó bằng tổng hai số bca và cab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số cần tìm có dạng $\overline{abc}$ với $a,b,c$ là số tự nhiên có 1 chữ số, $a>0$. Theo bài ra ta có:
$2\overline{abc}=\overline{bca}+\overline{cab}$
$2(100a+10b+c)=100b+10c+a+100c+10a+b$
$200a+20b+20c=101b+110c+11a$
$189a=81b+90c$
$21a=9b+10c$
$10c=21a-9b\vdots 3\Rightarrow c\vdots 3$
$\Rightarrow c$ có thể là $0,3,6,9$
-----------------------------------------
Nếu $c=0$ thì $21a=9b\Rightarrow 7a=3b$
$\Rightarrow 3b\vdots 7\Rightarrow b\vdots 7\Rightarrow b=0$ hoặc $b=7$.
$b=0$ thì $a=0$ (vô lý - loại)
$b=7$ thì $a=3$. Số cần tìm là $370$
-------------------------------------------
Nếu $c=3$ thì $21a=9b+30$
$\Rightarrow 7a=3b+10< 3.10+10=40$
$\Rightarrow a\leq 5$
Mà $7a=3b+10> 10\Rightarrow a> 1$
Thử $a=2,3,4,5$ thấy $a=4; b=6$ thỏa mãn. Số cần tìm $463$
-------------------------------------------
Nếu $c=6$ thì $21a=9b+60$
$\Rightarrow 7a=3b+20\geq 20\Rightarrow a>2$
$7a=3b+20< 3.10+20=50\Rightarrow a\leq 7$
Thử $a=3,4,5,6,7$ thì $a=5; b=5$. Số cần tìm $556$
-------------------------------------------
Nếu $c=9$ thì $21a=9b+90$
$\Rightarrow 7a=3b+30\vdots 3\Rightarrow a\vdots 3$
$\Rightarrow a=3,6,9$. Thử thì $a=6; b=4$
Số cần tìm $649$
tìm số tự nhiên abc có 3 chữ số khác nhau và khác 0, sao cho abc bằng trung bình cộng của bca và cab
\(\overline{abc}=\dfrac{1}{2}\left(\overline{bca}+\overline{cab}\right)\)
=>\(100a+10b+c=\dfrac{1}{2}\left(100b+10c+a+100c+10a+b\right)\)
=>\(100a+10b+c=\dfrac{1}{2}\left(101b+110c+11a\right)\)
=>\(100a+10b+c=50,5b+55c+5,5a\)
=>\(94,5a-40,5b-54c=0\)
=>\(\left(a;b;c\right)\in\left\{\left(1;1;1\right);\left(2;2;2\right);...;\left(9;9;9\right)\right\}\)
Vậy: Các số cần tìm là \(\left\{111;222;333;444;555;666;777;888;999\right\}\)
Câu hỏi của LÊ TRUNG HIẾU - Toán lớp 6 - Học toán với OnlineMath
Câu 2: Ta có:
abc=(bca+cab):2
=>2.abc=bca+cab
=>200a+20b+2c=101b+110c+11a
=>189a=81b+108c
=>7a=3b+4c
Tìm được 4 số: 481;629;518;592
abc+bca+cab=66
=>(100a+10b+c)+(100b+10c+a)+(100c+10a+b)=666
=>(100a+10a+a)+(100b+10b+b)+(100c+10c+c)=666
=>111a+111b+111c=666=>111(a+b+c)=666
=>a+b+c=6
mà a>b>c>0=>a=3;b=2;c=1
a);b) ko hiểu đề
A.
Gọi số cần tìm là \(\overline{abc}\) theo đề bài
\(\overline{abc}=100a+10b+c=98a+7b+2a+3b+c=\)
\(=\left(98a+7b\right)+2\left(a+b+c\right)+\left(b-c\right)⋮7\)
\(\Rightarrow\left(98a+7b\right)+2.14+b-c⋮7\)
Ta có \(\left(98a+7b\right)+2.14⋮7\Rightarrow b-c⋮7\) Ta có các trường hợp sau
+Nếu b=c => a=14-(b+c) mà a<=9 => 14-(b+c)<=9 => b+c>=5, mặt khác a>0 => 14-(b+c)>0=> b+c<14 từ đây ta có các trường hợp
b=c=3 => a=8
b=c=4 => a=6
b=c=5 => a=4
b=c=6 => a=2
+ Nếu b khác c
Nếu b=9 => c=2 => a=14-9-2=3
Nếu b=8 => c=1 => a=14-8-1=5
Nếu b=7 => c=0 => a=14-7=7
Nếu c=9 => b=2 => a=14-9-2=3
Nếu c=8 => b=1 => a=14-8-1=5
Nếu c=7 => b=0 => a=14-7=7
\(\Rightarrow\overline{abc}=\left\{833;644,455,266,329,392,518,581,707,770\right\}\)