cho a,b,c,d là số nguyên thỏa mãn a+b=c+d=25 .tìm GTLN của c/b+d/a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{c}{b}+\frac{d}{c}=\frac{c+d}{b+c}=1\)
Mà \(a+b=c+d=25\)
Nên \(\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{b}\le2\)
Dấu ''='' xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Trước tiên ta đi chứng minh BĐT phụ là:
Với a,b>0�,�>0 thì a2+b4≥ab(a2+b2)�2+�4≥��(�2+�2)
Cách CM:
BĐT trên tương đương với: (a−b)2(a2+ab+b2)≥0(�−�)2(�2+��+�2)≥0 (luôn đúng)
Quay trở về bài toán chính: Áp dụng BĐT phụ trên :
⇒ca4+b4+c≤cab(a2+b2)+c2ab=cab(a2+b2+c2)=c2a2+b2+c2⇒��4+�4+�≤���(�2+�2)+�2��=���(�2+�2+�2)=�2�2+�2+�2
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
⇒T≤a2+b2+c2a2+b2+c2=1⇒�≤�2+�2+�2�2+�2+�2=1 (đpcm)
Dấu bằng xảy ra khi a=b=c=1
Ta có \(a+b=c+d=25\Rightarrow\frac{c}{b}=\frac{d}{a}\)(vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Nên \(a+b=c+d=25=>\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
GTLM=/????????????????????????????????????????????????????????????????/
Bn Hân oi : GTLN = giá trị lớn nhất
Còn giải bài trên chế bó tay chấm com ^ ^' hich