Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{c}{b}+\frac{d}{c}=\frac{c+d}{b+c}=1\)
Mà \(a+b=c+d=25\)
Nên \(\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{b}\le2\)
Dấu ''='' xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Ta có \(a+b=c+d=25\Rightarrow\frac{c}{b}=\frac{d}{a}\)(vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Nên \(a+b=c+d=25=>\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì \(a\) là số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp .
\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.
\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn .
Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .
Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))
Vậy : \(a+b+c+d\) là hợp số .
Xét :
Vì là số nguyên dương nên là hai số tự nhiên liên tiếp .
chia hết cho 2. Tương tự ta có : đều chia hết cho 2.
là số chẵn .
Lại có : là số chẵn .
Do đó : là số chẵn mà (Do )
Vậy : là hợp số .
Lời giải:
$a^2+b^2+c^2+d^2=(a+b)^2-2ab+(c+d)^2-2cd$
$=(a+b)^2+(c+d)^2-2ab-2cd$
$=(a+b+c+d)^2-2(a+b)(c+d)-2ab-2cd\vdots 2$
$\Rightarrow (a+b+c+d)^2\vdots 2$
$\Rightarrow a+b+c+d\vdots 2$
Mà $a,b,c,d$ là số nguyên dương nên $a+b+c+d>2$
Vậy $a+b+c+d$ là số chẵn lớn hơn 2, do đó nó là hợp số (đpcm)
GTLM=/????????????????????????????????????????????????????????????????/
Bn Hân oi : GTLN = giá trị lớn nhất
Còn giải bài trên chế bó tay chấm com ^ ^' hich