K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

Hình như cậu đăng câu khó không

5 tháng 4 2017
Bn ơi câu này sai đề . Đề đúng phải ntn : Cho 2bz - 3cy/a = 3cz - az/2b = ay - 2bx/3c. Chứng minh x/a = y/2b = 7/3c
5 tháng 4 2017
Cho 2bz - 3cy/a = 3cz - az/2b = ay - 2bx/3c,Chứng minh x/a = y/2b = 7/3c,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7 Bạn kiểm tra lại đề bài nhé.
mình sửa đề và làm như thế
27 tháng 2 2016

bó tay and chân .com .vn

24 tháng 12 2017

\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\\ \Rightarrow\dfrac{2abz-3acy}{a}=\dfrac{6bcx-2abz}{2b}=\dfrac{3acy-6bcx}{3c}\\ =\dfrac{\left(2abz-3acy\right)+\left(6bcx-2abz\right)+\left(3acy-6bcx\right)}{a+2b+3c}\\ =\dfrac{\left(2abz-2abz\right)+\left(3acy-3acy\right)+\left(6bcx-6bcx\right)}{a+2b+3c}=0\\ \)

\(\Rightarrow2bz-3cy=3cx-az=ay-2bx=0\\ \Rightarrow\left\{{}\begin{matrix}2bz=3cy\\3cx=az\\ay=2bx\end{matrix}\right.\)

\(2bz=3cy\Rightarrow\dfrac{2b}{y}=\dfrac{3c}{z}\\ 3cx=az\Rightarrow\dfrac{3c}{z}=\dfrac{a}{x}\\ ay=2bx\Rightarrow\dfrac{a}{x}=\dfrac{2b}{y}\\ \Rightarrow\dfrac{a}{x}=\dfrac{2b}{y}=\dfrac{3c}{z}\Rightarrow.....\)

25 tháng 3 2018

ngok.Nhân tử cũng phải nhân mẫu chứ

15 tháng 11 2019

Theo bài ra ta có : \(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)

\(\Rightarrow\frac{a\left(2bz-3cy\right)}{a^2}=\frac{2b\left(3cx-az\right)}{\left(2b\right)^2}=\frac{3c\left(ay-2bx\right)}{\left(3c\right)^2}\)

\(\Rightarrow\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{\left(2b\right)^2}=\frac{3acy-6bcx}{\left(3c\right)^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{\left(2b\right)^2}=\frac{3acy-6bcx}{\left(3c\right)^2}=\frac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+\left(2b\right)^2+\left(3c\right)^2}=0\)

=> \(\hept{\begin{cases}2bz=3cy\\3cx=az\\ay=2bx\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{3c}=\frac{y}{2b}\\\frac{z}{3c}=\frac{x}{a}\\\frac{y}{2b}=\frac{x}{a}\end{cases}\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\left(\text{đpcm}\right)}\)