Cho tam giác ABC biết AB = 3cm, BC = 5cm, AC = 4cm. Gọi đường thẳng qua A và song song với BC là a, đường thẳng qua B và song song với AC là b, đường thẳng qua C và song song với AB là c. Gọi A’; B’; C’ lần lượt là giao điểm của các đưởng thẳng b và c; a và c; a và b. Tìm độ dài các cạnh của tam giác A’B’C’
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔCDA có
\(\widehat{ACB}=\widehat{CAD}\)
AC chung
\(\widehat{CAB}=\widehat{ACD}\)
Do đó: ΔABC=ΔCDA
b: Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
Suy ra: Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường
hay M là trung điểm của AC
c: Xét ΔAMI và ΔCMK có
\(\widehat{IAM}=\widehat{KCM}\)
AM=CM
\(\widehat{AMI}=\widehat{CMK}\)
Do đó: ΔAMI=ΔCMK
Suy ra: MI=MK
mà M,I,K thẳng hàng
nên M là trung điểm của IK
a)+Vì ΔABC có AB=AC(gt)⇒ΔABC là tam giác cân tại A
⇒∠ABC=∠ACB(t/c)
+H là trung điểm BC(gt)⇒HB=HC
+Xét ΔAHB vàΔAHC có:
AB=AC(gt)
∠ABC=∠ACB(cmt)
HB=HC(cmt)
⇒ΔAHB=ΔAHC(c.g.c)⇒đpcm.
b)+Theo a) có: ΔAHB=ΔAHC
⇒∠AHB=∠AHC(2 góc tương ứng)
+Mà ∠AHB+∠AHC=180°(kề bù)
⇒∠AHB=∠AHC=90°⇒AH⊥BC(đpcm).
c)+Vì M ∈ [AB](gt)
AB∥k(gt)
⇒MA∥k
+ Mà C,N∈ k ⇒CN∥MA ⇒đpcm.
AD//BC; BD//AC nên ADBC là hình bình hành.
AF//BC; AB//FC nên AFCB là hình bình hành.
AC//BE; AB//CE nên ACEB là hình bình hành.
-Gọi G là giao của CD và BF.
-Ta có: ADBC là hình bình hành (cmt)
\(\Rightarrow\)CD đi qua trung điểm AB.
-Ta có: AFCB là hình bình hành (cmt)
\(\Rightarrow\)BF đi qua trung điểm AC.
-Xét △ABC có:
CD là trung tuyến (CD đi qua trung điểm AB)
BF là trung tuyến (BF đi qua trung điểm AC)
G là giao của CD và BF (gt)
\(\Rightarrow\) G là trọng tâm của △ABC.
\(\Rightarrow\)AG đi qua trung điểm BC (1)
-Ta có: ACEB là hình bình hành (cmt)
\(\Rightarrow\) AE đi qua trung điểm BC (2)
-Từ (1) và (2) suy ra: A,G,E thẳng hàng hay ba đường thẳng AE,BF,CD đồng quy tại G.
Áp dụng định lý Py-ta-go: Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
Áp dụng định lý 2 đường trung bình của tam giác: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy
Lời giải chi tiết:
Áp dụng định lí Py-ta-go cho ΔABC vuông tại A ta có:
BC2=AB2+AC2⇒BC2=32+42=25⇒BC=5cm
Mà {AE=EB(gt)AF=FC(gt) ⇒EF là đường trung bình của ΔABC (định nghĩa)
⇒EF=12BC=12×5=2,5cm (tính chất đường trung bình của tam giác).